IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v198y2023i2d10.1007_s10957-023-02202-7.html
   My bibliography  Save this article

New Outer Proximal Methods for Solving Variational Inequality Problems

Author

Listed:
  • Pham Ngoc Anh

    (Posts and Telecommunications Institute of Technology)

Abstract

In this paper, we propose a new outer proximal approach for solving the variational inequality problems in the real Euclidean space, where the feasible set is replaced by its polyhedral outer approximation. First, we prove the quasicontractiveness of the outer proximal operator. Second, we apply this property to present two new algorithms and their convergence under strongly monotone and Lipschitz continuous conditions of the cost mapping. Finally, we give some numerical results for the proposed algorithms and comparison with other known methods.

Suggested Citation

  • Pham Ngoc Anh, 2023. "New Outer Proximal Methods for Solving Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 479-501, August.
  • Handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02202-7
    DOI: 10.1007/s10957-023-02202-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02202-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02202-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. C. Zeng & N. C. Wong & J. C. Yao, 2007. "Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 51-69, January.
    2. Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    2. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    3. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    4. L. C. Ceng & A. Petruşel, 2010. "Krasnoselski-Mann Iterations for Hierarchical Fixed Point Problems for a Finite Family of Nonself Mappings in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 617-639, September.
    5. Rapeepan Kraikaew & Satit Saejung, 2012. "On Maingé’s Approach for Hierarchical Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 71-87, July.
    6. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    7. Giuseppe Marino & Hong-Kun Xu, 2011. "Explicit Hierarchical Fixed Point Approach to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 61-78, April.
    8. Nguyen Buong & Nguyen Thi Hong Phuong, 2013. "Strong Convergence to Solutions for a Class of Variational Inequalities in Banach Spaces by Implicit Iteration Methods," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 399-411, November.
    9. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.
    10. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    11. Q. L. Dong & Y. C. Tang & Y. J. Cho & Th. M. Rassias, 2018. "“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem," Journal of Global Optimization, Springer, vol. 71(2), pages 341-360, June.
    12. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    13. Nguyen Buong & Lam Thuy Duong, 2011. "An Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 513-524, December.
    14. Lu-Chuan Ceng & Jen-Chih Yao, 2013. "Existence theorems for generalized set-valued mixed (quasi-)variational inequalities in Banach spaces," Journal of Global Optimization, Springer, vol. 55(1), pages 27-51, January.
    15. P. E. Maingé, 2008. "New Approach to Solving a System of Variational Inequalities and Hierarchical Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 459-477, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02202-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.