IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v50y2011i2p351-378.html
   My bibliography  Save this article

A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds

Author

Listed:
  • Chen Ling
  • Hongxia Yin
  • Guanglu Zhou

Abstract

No abstract is available for this item.

Suggested Citation

  • Chen Ling & Hongxia Yin & Guanglu Zhou, 2011. "A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds," Computational Optimization and Applications, Springer, vol. 50(2), pages 351-378, October.
  • Handle: RePEc:spr:coopap:v:50:y:2011:i:2:p:351-378
    DOI: 10.1007/s10589-010-9356-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9356-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9356-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqun Qi & Houyuan Jiang, 1997. "Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 301-325, May.
    2. L. Qi & D. Sun, 2002. "Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 121-147, April.
    3. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    2. Zhengyong Zhou & Yunchan Peng, 2019. "The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems," Journal of Global Optimization, Springer, vol. 74(1), pages 169-193, May.
    3. Alain B. Zemkoho & Shenglong Zhou, 2021. "Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 625-674, March.
    4. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
    5. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    6. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    7. Z. Wei & L. Qi & X. Chen, 2003. "An SQP-Type Method and Its Application in Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 205-228, January.
    8. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    9. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    10. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    11. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    12. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    13. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.
    14. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    15. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    16. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    17. M. A. Tawhid & J. L. Goffin, 2008. "On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 127-140, October.
    18. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    19. C. Zhang & Q. J. Wei, 2009. "Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 391-403, November.
    20. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:50:y:2011:i:2:p:351-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.