IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01445-2.html
   My bibliography  Save this article

Testing for linearity in scalar-on-function regression with responses missing at random

Author

Listed:
  • Manuel Febrero-Bande

    (Universidade de Santiago de Compostela)

  • Pedro Galeano

    (Universidad Carlos III de Madrid)

  • Eduardo García-Portugués

    (Universidad Carlos III de Madrid)

  • Wenceslao González-Manteiga

    (Universidade de Santiago de Compostela)

Abstract

A goodness-of-fit test for the Functional Linear Model with Scalar Response (FLMSR) with responses Missing at Random (MAR) is proposed in this paper. The test statistic relies on a marked empirical process indexed by the projected functional covariate and its distribution under the null hypothesis is calibrated using a wild bootstrap procedure. The computation and performance of the test rely on having an accurate estimator of the functional slope of the FLMSR when the sample has MAR responses. Three estimation methods based on the Functional Principal Components (FPCs) of the covariate are considered. First, the simplified method estimates the functional slope by simply discarding observations with missing responses. Second, the imputed method estimates the functional slope by imputing the missing responses using the simplified estimator. Third, the inverse probability weighted method incorporates the missing response generation mechanism when imputing. Furthermore, both cross-validation and LASSO regression are used to select the FPCs used by each estimator. Several Monte Carlo experiments are conducted to analyze the behavior of the testing procedure in combination with the functional slope estimators. Results indicate that estimators performing missing-response imputation achieve the highest power. The testing procedure is applied to check for linear dependence between the average number of sunny days per year and the mean curve of daily temperatures at weather stations in Spain.

Suggested Citation

  • Manuel Febrero-Bande & Pedro Galeano & Eduardo García-Portugués & Wenceslao González-Manteiga, 2024. "Testing for linearity in scalar-on-function regression with responses missing at random," Computational Statistics, Springer, vol. 39(6), pages 3405-3429, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01445-2
    DOI: 10.1007/s00180-023-01445-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01445-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01445-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    2. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Sun, Zhihua & Chen, Feifei & Zhou, Xiaohua & Zhang, Qingzhao, 2017. "Improved model checking methods for parametric models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 147-161.
    5. Jing Qin & Biao Zhang & Denis H.Y. Leung, 2017. "Efficient Augmented Inverse Probability Weighted Estimation in Missing Data Problems," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 86-97, January.
    6. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    7. Adam Ciarleglio & Eva Petkova & Ofer Harel, 2022. "Elucidating Age and Sex-Dependent Association Between Frontal EEG Asymmetry and Depression: An Application of Multiple Imputation in Functional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 12-26, January.
    8. Chen, Feifei & Jiang, Qing & Feng, Zhenghui & Zhu, Lixing, 2020. "Model checks for functional linear regression models based on projected empirical processes," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    2. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    3. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    4. Xu, Kai & Zhou, Yeqing, 2021. "Projection-averaging-based cumulative covariance and its use in goodness-of-fit testing for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    5. Pedro H. C. Sant'Anna & Xiaojun Song, 2020. "Specification tests for generalized propensity scores using double projections," Papers 2003.13803, arXiv.org, revised Apr 2023.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    8. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    11. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    12. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    13. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    14. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    15. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    16. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    19. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    20. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01445-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.