IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v35y2017i1p86-97.html
   My bibliography  Save this article

Efficient Augmented Inverse Probability Weighted Estimation in Missing Data Problems

Author

Listed:
  • Jing Qin
  • Biao Zhang
  • Denis H.Y. Leung

Abstract

When analyzing data with missing data, a commonly used method is the inverse probability weighting (IPW) method, which reweights estimating equations with propensity scores. The popularity of the IPW method is due to its simplicity. However, it is often being criticized for being inefficient because most of the information from the incomplete observations is not used. Alternatively, the regression method is known to be efficient but is nonrobust to the misspecification of the regression function. In this article, we propose a novel way of optimally combining the propensity score function and the regression model. The resulting estimating equation enjoys the properties of robustness against misspecification of either the propensity score or the regression function, as well as being locally semiparametric efficient. We demonstrate analytically situations where our method leads to a more efficient estimator than some of its competitors. In a simulation study, we show the new method compares favorably with its competitors in finite samples. Supplementary materials for this article are available online.

Suggested Citation

  • Jing Qin & Biao Zhang & Denis H.Y. Leung, 2017. "Efficient Augmented Inverse Probability Weighted Estimation in Missing Data Problems," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 86-97, January.
  • Handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:86-97
    DOI: 10.1080/07350015.2015.1058266
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1058266
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1058266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rothe, Christoph & Firpo, Sergio Pinheiro, 2013. "Semiparametric estimation and inference using doubly robust moment conditions," Textos para discussão 330, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habimana, Dominique & Haughton, Jonathan & Nkurunziza, Joseph & Haughton, Dominique Marie-Annick, 2021. "Measuring the impact of unconditional cash transfers on consumption and poverty in Rwanda," World Development Perspectives, Elsevier, vol. 23(C).
    2. Seong‐H. Lee & Yanyuan Ma & Ying Wei & Jinbo Chen, 2023. "Optimal sampling for positive only electronic health record data," Biometrics, The International Biometric Society, vol. 79(4), pages 2974-2986, December.
    3. Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
    4. Sun Hao & Ertefaie Ashkan & Lu Xin & Johnson Brent A., 2020. "Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 300-314, January.
    5. He, Xin & Mao, Xiaojun & Wang, Zhonglei, 2024. "Nonparametric augmented probability weighting with sparsity," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    6. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    7. Long, Wenjin & Pang, Xiaopeng & Dong, Xiao-yuan & Zeng, Junxia, 2020. "Is rented accommodation a good choice for primary school students' academic performance? – Evidence from rural China," China Economic Review, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    2. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    4. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    5. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    6. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018. "A General Double Robustness Result For Estimating Average Treatment Effects," Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
    8. Boris Kaiser, 2016. "Decomposing differences in arithmetic means: a doubly robust estimation approach," Empirical Economics, Springer, vol. 50(3), pages 873-899, May.
    9. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    10. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:86-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.