IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i537p12-26.html
   My bibliography  Save this article

Elucidating Age and Sex-Dependent Association Between Frontal EEG Asymmetry and Depression: An Application of Multiple Imputation in Functional Regression

Author

Listed:
  • Adam Ciarleglio
  • Eva Petkova
  • Ofer Harel

Abstract

Frontal power asymmetry (FA), a measure of brain function derived from electroencephalography, is a potential biomarker for major depressive disorder (MDD). Though FA is functional in nature, it is typically reduced to a scalar value prior to analysis, possibly obscuring its relationship with MDD and leading to a number of studies that have provided contradictory results. To overcome this issue, we sought to fit a functional regression model to characterize the association between FA and MDD status, adjusting for age, sex, cognitive ability, and handedness using data from a large clinical study that included both MDD and healthy control (HC) subjects. Since nearly 40% of the observations are missing data on either FA or cognitive ability, we propose an extension of multiple imputation (MI) by chained equations that allows for the imputation of both scalar and functional data. We also propose an extension of Rubin’s Rules for conducting valid inference in this setting. The proposed methods are evaluated in a simulation and applied to our FA data. For our FA data, a pooled analysis from the imputed datasets yielded similar results to those of the complete case analysis. We found that, among young females, HCs tended to have higher FA over the θ, α, and β frequency bands, but that the difference between HC and MDD subjects diminishes and ultimately reverses with age. For males, HCs tended to have higher FA in the β frequency band, regardless of age. Young male HCs had higher FA in the θ and α bands, but this difference diminishes with increasing age in the α band and ultimately reverses with increasing age in the θ band. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Adam Ciarleglio & Eva Petkova & Ofer Harel, 2022. "Elucidating Age and Sex-Dependent Association Between Frontal EEG Asymmetry and Depression: An Application of Multiple Imputation in Functional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 12-26, January.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:12-26
    DOI: 10.1080/01621459.2021.1942011
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1942011
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1942011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Febrero-Bande & Pedro Galeano & Eduardo García-Portugués & Wenceslao González-Manteiga, 2024. "Testing for linearity in scalar-on-function regression with responses missing at random," Computational Statistics, Springer, vol. 39(6), pages 3405-3429, September.
    2. Ruonan Li & Luo Xiao, 2023. "Latent factor model for multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3307-3318, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.