IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v154y2017icp147-161.html
   My bibliography  Save this article

Improved model checking methods for parametric models with responses missing at random

Author

Listed:
  • Sun, Zhihua
  • Chen, Feifei
  • Zhou, Xiaohua
  • Zhang, Qingzhao

Abstract

In this paper, we consider the lack-of-fit test of a parametric model when the response variable is missing at random. The popular imputation and inverse probability weighting methods are first employed to tackle the missing data. Then by employing the projection technique, we propose empirical-process-based testing methods to check the appropriateness of the parametric model. The asymptotic properties of the test statistics are obtained under the null and local alternative hypothetical models. It is shown that the proposed testing methods are consistent, and can detect local alternative hypothetical models converging to the null model at the parametric rate. To determine the critical values, a consistent bootstrap method is proposed, and its asymptotic properties are established. The simulation results show that the tests outperform the existing methods in terms of empirical sizes and powers, especially under the situation with high dimensional covariates. Analysis of a diabetes data set of Pima Indians is carried out to demonstrate the application of the testing procedures.

Suggested Citation

  • Sun, Zhihua & Chen, Feifei & Zhou, Xiaohua & Zhang, Qingzhao, 2017. "Improved model checking methods for parametric models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 147-161.
  • Handle: RePEc:eee:jmvana:v:154:y:2017:i:c:p:147-161
    DOI: 10.1016/j.jmva.2016.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16301336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    3. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    4. Sun, Zhihua & Wang, Qihua & Dai, Pengjie, 2009. "Model checking for partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 636-651, April.
    5. Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.
    6. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    7. Wangli Xu & Lixing Zhu, 2015. "Nonparametric check for partial linear errors-in-covariables models with validation data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 793-815, August.
    8. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    9. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    10. Winfried Stute & Li‐Xing Zhu, 2002. "Model Checks for Generalized Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 535-545, September.
    11. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    12. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    13. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Wang & Dianpeng Wang & Yubin Tian, 2022. "Multidimensional specification test based on non-stationary time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 348-372, June.
    2. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    3. Pedro H. C. Sant'Anna & Xiaojun Song, 2020. "Specification tests for generalized propensity scores using double projections," Papers 2003.13803, arXiv.org, revised Apr 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    2. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    3. Kloodt, Nick & Neumeyer, Natalie, 2020. "Specification tests in semiparametric transformation models — A multiplier bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    4. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    5. Zhihua Sun & Dongshan Luo & Xiaohua Zhou & Qingzhao Zhang, 2021. "Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable," Statistical Papers, Springer, vol. 62(4), pages 1723-1751, August.
    6. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    7. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Li, Lingzhu & Chiu, Sung Nok & Zhu, Lixing, 2019. "Model checking for regressions: An approach bridging between local smoothing and global smoothing methods," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 64-82.
    9. Colling, Benjamin & Van Keilegom, Ingrid, 2017. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 10-30.
    10. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.
    11. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    12. Pascal Lavergne & Valentin Patilea, 2011. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52, January.
    13. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    14. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    15. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    16. Jun Zhang & Xia Cui & Heng Peng, 2020. "Estimation and hypothesis test for partial linear single-index multiplicative models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 699-740, June.
    17. Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods and an Application on the Minimum Wage and Employment," DETU Working Papers 1804, Department of Economics, Temple University.
    18. Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
    19. Hongtu Zhu & Joseph G. Ibrahim & Xiaoyan Shi, 2009. "Diagnostic Measures for Generalized Linear Models with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 686-712, December.
    20. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023. "Optimal minimax rates of specification testing with data-driven bandwidth," Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:154:y:2017:i:c:p:147-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.