IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i18p1915-1920.html
   My bibliography  Save this article

Safe density ratio modeling

Author

Listed:
  • Konis, Kjell
  • Fokianos, Konstantinos

Abstract

An important problem in logistic regression modeling is the existence of the maximum likelihood estimators. In particular, when the sample size is small, the maximum likelihood estimator of the regression parameters does not exist if the data are completely, or quasicompletely separated. Recognizing that this phenomenon has a serious impact on the fitting of the density ratio model-which is a semiparametric model whose profile empirical log-likelihood has the logistic form because of the equivalence between prospective and retrospective sampling-we suggest a linear programming methodology for examining whether the maximum likelihood estimators of the finite dimensional parameter vector of the model exist. It is shown that the methodology can be effectively utilized in the analysis of case-control gene expression data by identifying cases where the density ratio model cannot be applied. It is demonstrated that naive application of the density ratio model yields erroneous conclusions.

Suggested Citation

  • Konis, Kjell & Fokianos, Konstantinos, 2009. "Safe density ratio modeling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1915-1920, September.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:18:p:1915-1920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00200-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Qin & Marianne Berwick & Rosie Ashbolt & Terry Dwyer, 2002. "Quantifying the Change of Melanoma Incidence by Breslow Thickness," Biometrics, The International Biometric Society, vol. 58(3), pages 665-670, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Schwendinger & Bettina Grün & Kurt Hornik, 2021. "A comparison of optimization solvers for log binomial regression including conic programming," Computational Statistics, Springer, vol. 36(3), pages 1721-1754, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Qin & Denis H. Y. Leung, 2004. "A Semi-parametric Two-component “Compound” Mixture Model and Its Application to Estimating Malaria Attributable Fractions," Working Papers 17-2004, Singapore Management University, School of Economics.
    2. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    3. Konstantinos Fokianos & Irene Kaimi, 2006. "On the Effect of Misspecifying the Density Ratio Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 475-497, September.
    4. Aubin, Jean-Baptiste & Leoni-Aubin, Samuela, 2008. "Projection density estimation under a m-sample semiparametric model," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2451-2468, January.
    5. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    6. Jing Qin & Kung-Yee Liang, 2011. "Hypothesis Testing in a Mixture Case–Control Model," Biometrics, The International Biometric Society, vol. 67(1), pages 182-193, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:18:p:1915-1920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.