IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i4d10.1007_s00180-020-00975-3.html
   My bibliography  Save this article

Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions

Author

Listed:
  • Guodong Shan

    (Changchun University)

  • Yiheng Hou

    (Dongbei University of Finance and Economics)

  • Baisen Liu

    (Dongbei University of Finance and Economics)

Abstract

Functional linear regression (FLR) is a popular method that studies the relationship between a scalar response and a functional predictor. A common estimation procedure for the FLR model is using maximum likelihood by assuming normal distributions for measurement errors; however this method may make inferences vulnerable to the presence of outliers. In this article, we introduce a robust estimation method of partially functional linear model by considering a class of scale mixtures of normal (SMN) distributions for measurement errors. Due to intractable closed form of likelihood function with the SMN distributions, a Bayesian framework is adopted and an MCMC algorithm is developed to carry out posterior inference on model parameters. The finite sample performance of our proposed method is evaluated by using some simulation studies and a real dataset.

Suggested Citation

  • Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00975-3
    DOI: 10.1007/s00180-020-00975-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00975-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00975-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianjun Zhou & Jiang Du & Zhimeng Sun, 2016. "M-Estimation for partially functional linear regression model based on splines," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(21), pages 6436-6446, November.
    2. Zhu, Hongxiao & Brown, Philip J. & Morris, Jeffrey S., 2011. "Robust, Adaptive Functional Regression in Functional Mixed Model Framework," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1167-1179.
    3. Crainiceanu, Ciprian M. & Goldsmith, A. Jeffrey, 2010. "Bayesian Functional Data Analysis Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i11).
    4. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    5. Brown P.J. & Fearn T & Vannucci M, 2001. "Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 398-408, June.
    6. G. J. M. Rosa & D. Gianola & C. R. Padovani, 2004. "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 855-873.
    7. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    8. Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
    9. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    10. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    11. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    12. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
    13. Jeff Goldsmith & Ciprian M. Crainiceanu & Brian Caffo & Daniel Reich, 2012. "Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 453-469, May.
    14. Maronna, Ricardo A. & Yohai, Victor J., 2013. "Robust functional linear regression based on splines," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 46-55.
    15. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    16. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    2. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    3. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    4. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    5. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    6. Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    7. Fanrong Zhao & Baoxue Zhang, 2024. "A U-Statistic for Testing the Lack of Dependence in Functional Partially Linear Regression Model," Mathematics, MDPI, vol. 12(16), pages 1-24, August.
    8. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
    9. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    10. Sang, Peijun & Lockhart, Richard A. & Cao, Jiguo, 2018. "Sparse estimation for functional semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 105-118.
    11. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    12. Ruiyuan Cao & Jiang Du & Jianjun Zhou & Tianfa Xie, 2020. "FPCA-based estimation for generalized functional partially linear models," Statistical Papers, Springer, vol. 61(6), pages 2715-2735, December.
    13. Yang, Seong J. & Shin, Hyejin & Lee, Sang Han & Lee, Seokho, 2020. "Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    14. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    15. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
    17. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    19. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    20. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00975-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.