IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i21p6436-6446.html
   My bibliography  Save this article

M-Estimation for partially functional linear regression model based on splines

Author

Listed:
  • Jianjun Zhou
  • Jiang Du
  • Zhimeng Sun

Abstract

M-estimation is a widely used technique for robust statistical inference. In this paper, we study robust partially functional linear regression model in which a scale response variable is explained by a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, we use polynomial splines to approximate the slop parameter. The estimation procedure is easy to implement, and it is resistant to heavy-tailederrors or outliers in the response. The asymptotic properties of the proposed estimators are established. Finally, we assess the finite sample performance of the proposed method by Monte Carlo simulation studies.

Suggested Citation

  • Jianjun Zhou & Jiang Du & Zhimeng Sun, 2016. "M-Estimation for partially functional linear regression model based on splines," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(21), pages 6436-6446, November.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:21:p:6436-6446
    DOI: 10.1080/03610926.2014.921309
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.921309
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.921309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    2. Fanrong Zhao & Baoxue Zhang, 2024. "A U-Statistic for Testing the Lack of Dependence in Functional Partially Linear Regression Model," Mathematics, MDPI, vol. 12(16), pages 1-24, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:21:p:6436-6446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.