IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v31y2016i3d10.1007_s00180-015-0636-0.html
   My bibliography  Save this article

Polynomial spline estimation for partial functional linear regression models

Author

Listed:
  • Jianjun Zhou

    (Yunnan University)

  • Zhao Chen

    (The Pennsylvania State University)

  • Qingyan Peng

    (Yunnan University)

Abstract

Because of its orthogonality, interpretability and best representation, functional principal component analysis approach has been extensively used to estimate the slope function in the functional linear model. However, as a very popular smooth technique in nonparametric/semiparametric regression, polynomial spline method has received little attention in the functional data case. In this paper, we propose the polynomial spline method to estimate a partial functional linear model. Some asymptotic results are established, including asymptotic normality for the parameter vector and the global rate of convergence for the slope function. Finally, we evaluate the performance of our estimation method by some simulation studies.

Suggested Citation

  • Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
  • Handle: RePEc:spr:compst:v:31:y:2016:i:3:d:10.1007_s00180-015-0636-0
    DOI: 10.1007/s00180-015-0636-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-015-0636-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-015-0636-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    3. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    4. Heng Lian, 2011. "Functional partial linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 115-128.
    5. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    6. Daowen Zhang & Xihong Lin & MaryFran Sowers, 2007. "Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome," Biometrics, The International Biometric Society, vol. 63(2), pages 351-362, June.
    7. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    8. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    9. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    2. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    3. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    4. Yu, Ping & Song, Xinyuan & Du, Jiang, 2024. "Composite expectile estimation in partial functional linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    5. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    2. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    3. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    4. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    5. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    6. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    7. Ruiyuan Cao & Jiang Du & Jianjun Zhou & Tianfa Xie, 2020. "FPCA-based estimation for generalized functional partially linear models," Statistical Papers, Springer, vol. 61(6), pages 2715-2735, December.
    8. Shin, Hyejin & Lee, Myung Hee, 2012. "On prediction rate in partial functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 93-106, January.
    9. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    10. Ping Yu & Jiang Du & Zhongzhan Zhang, 2020. "Single-index partially functional linear regression model," Statistical Papers, Springer, vol. 61(3), pages 1107-1123, June.
    11. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    12. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    13. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    14. Maity, Arnab & Huang, Jianhua Z., 2012. "Partially linear varying coefficient models stratified by a functional covariate," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1807-1814.
    15. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    16. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    17. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    18. Kourtellos, Andros & Stengos, Thanasis & Sun, Yiguo, 2022. "Endogeneity In Semiparametric Threshold Regression," Econometric Theory, Cambridge University Press, vol. 38(3), pages 562-595, June.
    19. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    20. Hörmann, Siegfried & Jammoul, Fatima, 2023. "Prediction in functional regression with discretely observed and noisy covariates," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:3:d:10.1007_s00180-015-0636-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.