IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v186y2023ics0167947323000932.html
   My bibliography  Save this article

Locally sparse quantile estimation for a partially functional interaction model

Author

Listed:
  • Liang, Weijuan
  • Zhang, Qingzhao
  • Ma, Shuangge

Abstract

Functional data analysis has been extensively conducted. In this study, we consider a partially functional model, under which some covariates are scalars and have linear effects, while some other variables are functional and have unspecified nonlinear effects. Significantly advancing from the existing literature, we consider a model with interactions between the functional and scalar covariates. To accommodate long-tailed error distributions which are not uncommon in data analysis, we adopt the quantile technique for estimation. To achieve more interpretable estimation, and to accommodate many practical settings, we assume that the functional covariate effects are locally sparse (that is, there exist subregions on which the effects are exactly zero), which naturally leads to a variable/model selection problem. We propose respecting the “main effect, interaction” hierarchy, which postulates that if a subregion has a nonzero effect in an interaction term, then its effect has to be nonzero in the corresponding main functional effect. For estimation, identification of local sparsity, and respect of the hierarchy, we propose a penalization approach. An effective computational algorithm is developed, and the consistency properties are rigorously established under mild regularity conditions. Simulation shows the practical effectiveness of the proposed approach. The analysis of the Tecator data further demonstrates its practical applicability. Overall, this study can deliver a novel and practically useful model and a statistically and numerically satisfactory estimation approach.

Suggested Citation

  • Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:csdana:v:186:y:2023:i:c:s0167947323000932
    DOI: 10.1016/j.csda.2023.107782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000932
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    2. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
    3. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    4. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    5. Berrendero, José R. & Bueno-Larraz, Beatriz & Cuevas, Antonio, 2019. "An RKHS model for variable selection in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 25-45.
    6. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    3. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
    4. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    5. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Sanying Feng & Menghan Zhang & Tiejun Tong, 2022. "Variable selection for functional linear models with strong heredity constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 321-339, April.
    7. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    8. Yang, Seong J. & Shin, Hyejin & Lee, Sang Han & Lee, Seokho, 2020. "Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    9. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    10. Fanrong Zhao & Baoxue Zhang, 2024. "A U-Statistic for Testing the Lack of Dependence in Functional Partially Linear Regression Model," Mathematics, MDPI, vol. 12(16), pages 1-23, August.
    11. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    12. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    13. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    14. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    15. Cai Li & Luo Xiao & Sheng Luo, 2022. "Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease," Biometrics, The International Biometric Society, vol. 78(2), pages 435-447, June.
    16. Wu Wang & Ying Sun & Huixia Judy Wang, 2023. "Latent group detection in functional partially linear regression models," Biometrics, The International Biometric Society, vol. 79(1), pages 280-291, March.
    17. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    18. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    19. Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    20. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:186:y:2023:i:c:s0167947323000932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.