IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v52y2011i2p431-446.html
   My bibliography  Save this article

A generalized skew two-piece skew-normal distribution

Author

Listed:
  • A. Jamalizadeh
  • A. Arabpour
  • N. Balakrishnan

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Jamalizadeh & A. Arabpour & N. Balakrishnan, 2011. "A generalized skew two-piece skew-normal distribution," Statistical Papers, Springer, vol. 52(2), pages 431-446, May.
  • Handle: RePEc:spr:stpapr:v:52:y:2011:i:2:p:431-446
    DOI: 10.1007/s00362-009-0240-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-009-0240-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-009-0240-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loperfido, Nicola, 2001. "Quadratic forms of skew-normal random vectors," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 381-387, October.
    2. Ramesh Gupta & Rameshwar Gupta, 2004. "Generalized skew normal model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 501-524, December.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    5. Barry Arnold & Robert Beaver & A. Azzalini & N. Balakrishnan & A. Bhaumik & D. Dey & C. Cuadras & J. Sarabia & Barry Arnold & Robert Beaver, 2002. "Skewed multivariate models related to hidden truncation and/or selective reporting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(1), pages 7-54, June.
    6. Robert N. Horn, 1988. "Analysis," Challenge, Taylor & Francis Journals, vol. 31(4), pages 56-58, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Faridi & Majid Jafari Khaledi, 2022. "The polar-generalized normal distribution: properties, Bayesian estimation and applications," Statistical Papers, Springer, vol. 63(2), pages 571-603, April.
    2. Teimouri, Mahdi & Nadarajah, Saralees, 2013. "On simulating Balakrishnan skew-normal variates," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 52-58.
    3. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    4. Mehmet Niyazi Çankaya & Abdullah Yalçınkaya & Ömer Altındaǧ & Olcay Arslan, 2019. "On the robustness of an epsilon skew extension for Burr III distribution on the real line," Computational Statistics, Springer, vol. 34(3), pages 1247-1273, September.
    5. Ralph Vince, 2023. "Expectation and Optimal Allocations in Existential Contests of Finite, Heavy-Tail-Distributed Outcomes," Mathematics, MDPI, vol. 12(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    2. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    3. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    4. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    5. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    6. M. Sharafi & J. Behboodian, 2008. "The Balakrishnan skew–normal density," Statistical Papers, Springer, vol. 49(4), pages 769-778, October.
    7. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    8. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    9. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    10. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    11. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    13. Batiz-Zuk, Enrique & Christodoulakis, George & Poon, Ser-Huang, 2015. "Credit contagion in the presence of non-normal shocks," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 129-139.
    14. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    15. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    16. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    17. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.
    18. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    19. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    20. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:52:y:2011:i:2:p:431-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.