IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i5p1527-1541.html
   My bibliography  Save this article

Bimodal skew-symmetric normal distribution

Author

Listed:
  • M.Y. Hassan
  • M.Y. El-Bassiouni

Abstract

We introduce a new parsimonious bimodal distribution, referred to as the bimodal skew-symmetric Normal (BSSN) distribution, which is potentially effective in capturing bimodality, excess kurtosis, and skewness. Explicit expressions for the moment-generating function, mean, variance, skewness, and excess kurtosis were derived. The shape properties of the proposed distribution were investigated in regard to skewness, kurtosis, and bimodality. Maximum likelihood estimation was considered and an expression for the observed information matrix was provided. Illustrative examples using medical and financial data as well as simulated data from a mixture of normal distributions were worked.

Suggested Citation

  • M.Y. Hassan & M.Y. El-Bassiouni, 2016. "Bimodal skew-symmetric normal distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1527-1541, March.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1527-1541
    DOI: 10.1080/03610926.2014.882950
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.882950
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.882950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Niyazi Çankaya & Abdullah Yalçınkaya & Ömer Altındaǧ & Olcay Arslan, 2019. "On the robustness of an epsilon skew extension for Burr III distribution on the real line," Computational Statistics, Springer, vol. 34(3), pages 1247-1273, September.
    2. Juan Duarte & Guillermo Martínez-Flórez & Diego Ignacio Gallardo & Osvaldo Venegas & Héctor W. Gómez, 2023. "A Bimodal Extension of the Epsilon-Skew-Normal Model," Mathematics, MDPI, vol. 11(3), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1527-1541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.