IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i1d10.1007_s00180-018-0830-y.html
   My bibliography  Save this article

Bootstrapping estimates of stability for clusters, observations and model selection

Author

Listed:
  • Han Yu

    (State University of New York at Buffalo)

  • Brian Chapman

    (University of Utah)

  • Arianna Di Florio

    (Cardiff University School of Medicine
    University of North Carolina at Chapel Hill)

  • Ellen Eischen

    (University of Oregon)

  • David Gotz

    (University of North Carolina at Chapel Hill)

  • Mathews Jacob

    (University of Iowa)

  • Rachael Hageman Blair

    (State University of New York at Buffalo)

Abstract

Clustering is a challenging problem in unsupervised learning. In lieu of a gold standard, stability has become a valuable surrogate to performance and robustness. In this work, we propose a non-parametric bootstrapping approach to estimating the stability of a clustering method, which also captures stability of the individual clusters and observations. This flexible framework enables different types of comparisons between clusterings and can be used in connection with two possible bootstrap approaches for stability. The first approach, scheme 1, can be used to assess confidence (stability) around clustering from the original dataset based on bootstrap replications. A second approach, scheme 2, searches over the bootstrap clusterings for an optimally stable partitioning of the data. The two schemes accommodate different model assumptions that can be motivated by an investigator’s trust (or lack thereof) in the original data and additional computational considerations. We propose a hierarchical visualization extrapolated from the stability profiles that give insights into the separation of groups, and projected visualizations for the inspection of the stability of individual operations. Our approaches show good performance in simulation and on real data. These approaches can be implemented using the R package bootcluster that is available on the Comprehensive R Archive Network (CRAN).

Suggested Citation

  • Han Yu & Brian Chapman & Arianna Di Florio & Ellen Eischen & David Gotz & Mathews Jacob & Rachael Hageman Blair, 2019. "Bootstrapping estimates of stability for clusters, observations and model selection," Computational Statistics, Springer, vol. 34(1), pages 349-372, March.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0830-y
    DOI: 10.1007/s00180-018-0830-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0830-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0830-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    2. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    3. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    2. Vincent Audigier & Ndèye Niang, 2023. "Clustering with missing data: which equivalent for Rubin’s rules?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 623-657, September.
    3. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    4. Coraggio, Luca & Coretto, Pietro, 2023. "Selecting the number of clusters, clustering models, and algorithms. A unifying approach based on the quadratic discriminant score," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    5. Rozmus Dorota, 2020. "Clustering Poland Among Eu Countries in Terms of a Sustainable Development Level in the Light of Various Cluster Stability Measures," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 319-340, June.
    6. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    7. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    8. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
    9. Alessandro Albano & José Luis García-Lapresta & Antonella Plaia & Mariangela Sciandra, 2023. "A family of distances for preference–approvals," Annals of Operations Research, Springer, vol. 323(1), pages 1-29, April.
    10. Mao, Xianpeng & Yang, Yuning, 2022. "Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    11. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    12. Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.
    13. Victoria Gregory & Guido Menzio & David G. Wiczer, 2021. "The Alpha Beta Gamma of the Labor Market," NBER Working Papers 28663, National Bureau of Economic Research, Inc.
    14. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    15. Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
    16. Will Wei Sun & Xingye Qiao & Guang Cheng, 2016. "Stabilized Nearest Neighbor Classifier and its Statistical Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1254-1265, July.
    17. Damien Jourdain & Juliette Lairez & Bruno Striffler & François Affholder, 2020. "Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 417-437, December.
    18. Matthew Whitaker & Joshua Elliott & Marc Chadeau-Hyam & Steven Riley & Ara Darzi & Graham Cooke & Helen Ward & Paul Elliott, 2022. "Persistent COVID-19 symptoms in a community study of 606,434 people in England," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    20. Stancu Stelian & Pernici Andreea, 2023. "Assessing the Evolution of the Energy Mix Worldwide, with a Focus on the Renewable Energy Transition," Management & Marketing, Sciendo, vol. 18(s1), pages 384-397, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0830-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.