IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v17y2023i3d10.1007_s11634-022-00519-1.html
   My bibliography  Save this article

Clustering with missing data: which equivalent for Rubin’s rules?

Author

Listed:
  • Vincent Audigier

    (CNAM, Laboratoire Cedric-MSDMA)

  • Ndèye Niang

    (CNAM, Laboratoire Cedric-MSDMA)

Abstract

Multiple imputation (MI) is a popular method for dealing with missing values. However, the suitable way for applying clustering after MI remains unclear: how to pool partitions? How to assess the clustering instability when data are incomplete? By answering both questions, this paper proposed a complete view of clustering with missing data using MI. The problem of partitions pooling is here addressed using consensus clustering while, based on the bootstrap theory, we explain how to assess the instability related to observed and missing data. The new rules for pooling partitions and instability assessment are theoretically argued and extensively studied by simulation. Partitions pooling improves accuracy, while measuring instability with missing data enlarges the data analysis possibilities: it allows assessment of the dependence of the clustering to the imputation model, as well as a convenient way for choosing the number of clusters when data are incomplete, as illustrated on a real data set.

Suggested Citation

  • Vincent Audigier & Ndèye Niang, 2023. "Clustering with missing data: which equivalent for Rubin’s rules?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 623-657, September.
  • Handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00519-1
    DOI: 10.1007/s11634-022-00519-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00519-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00519-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.
    2. William Day, 1986. "Foreword: Comparison and consensus of classifications," Journal of Classification, Springer;The Classification Society, vol. 3(2), pages 183-185, September.
    3. Joseph L. Schafer, 2003. "Multiple Imputation in Multivariate Problems When the Imputation and Analysis Models Differ," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 19-35, February.
    4. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    5. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    6. Julie Josse & Marie Chavent & Benot Liquet & François Husson, 2012. "Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 29(1), pages 91-116, April.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Jocelyn T. Chi & Eric C. Chi & Richard G. Baraniuk, 2016. "k -POD: A Method for k -Means Clustering of Missing Data," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 91-99, February.
    9. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Yu & Brian Chapman & Arianna Di Florio & Ellen Eischen & David Gotz & Mathews Jacob & Rachael Hageman Blair, 2019. "Bootstrapping estimates of stability for clusters, observations and model selection," Computational Statistics, Springer, vol. 34(1), pages 349-372, March.
    2. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    3. Coraggio, Luca & Coretto, Pietro, 2023. "Selecting the number of clusters, clustering models, and algorithms. A unifying approach based on the quadratic discriminant score," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    4. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
    5. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    6. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
    7. Alessandro Albano & José Luis García-Lapresta & Antonella Plaia & Mariangela Sciandra, 2023. "A family of distances for preference–approvals," Annals of Operations Research, Springer, vol. 323(1), pages 1-29, April.
    8. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    9. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    10. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    11. Joeri Hofmans & Eva Ceulemans & Douglas Steinley & Iven Mechelen, 2015. "On the Added Value of Bootstrap Analysis for K-Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 268-284, July.
    12. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    13. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    14. Binhuan Wang & Lanqiu Yao & Jiyuan Hu & Huilin Li, 2023. "A New Algorithm for Convex Biclustering and Its Extension to the Compositional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 193-216, April.
    15. Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
    16. Minjie Wang & Tianyi Yao & Genevera I. Allen, 2023. "Supervised convex clustering," Biometrics, The International Biometric Society, vol. 79(4), pages 3846-3858, December.
    17. Rozmus Dorota, 2020. "Clustering Poland Among Eu Countries in Terms of a Sustainable Development Level in the Light of Various Cluster Stability Measures," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 319-340, June.
    18. Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.
    19. Nazila Zarghi, 2021. "Evidence-Based Social Sciences: A New Emerging Field," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, January -.
    20. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00519-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.