IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1312-d148189.html
   My bibliography  Save this article

Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms

Author

Listed:
  • Dario Cottafava

    (Department of Culture, Politics and Society, University of Turin, Turin 10100, Italy)

  • Giulia Sonetti

    (Interuniversity Department of Regional & Urban Studies and Planning, Politechnic of Turin, Turin 10100, Italy)

  • Paolo Gambino

    (Department of Physics, University of Turin, Turin 10100, Italy)

  • Andrea Tartaglino

    (Energy Management, University of Turin, Turin 10100, Italy)

Abstract

We propose a simple tool to help the energy management of a large building stock defining clusters of buildings with the same function, setting alert thresholds for each cluster, and easily recognizing outliers. The objective is to enable a building management system to be used for detection of abnormal energy use. We start reviewing energy performance indicators, and how they feed into data visualization (DataViz) tools for a large building stock, especially for university campuses. After a brief presentation of the University of Turin’s building stock which represents our case study, we perform an explorative analysis based on the Multidimensional Detective approach by Inselberg, using the Scatter Plot Matrix and the Parallel Coordinates methods. The k-means clustering algorithm is then applied on the same dataset to test the hypotheses made during the explorative analysis. Our results show that DataViz techniques provide quick and user-friendly solutions for the energy management of a large stock of buildings. In particular, they help identifying clusters of buildings and outliers and setting alert thresholds for various Energy Efficiency Indices.

Suggested Citation

  • Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1312-:d:148189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciulla, Giuseppina & Lo Brano, Valerio & D’Amico, Antonino, 2016. "Modelling relationship among energy demand, climate and office building features: A cluster analysis at European level," Applied Energy, Elsevier, vol. 183(C), pages 1021-1034.
    2. Haas, Reinhard, 1997. "Energy efficiency indicators in the residential sector : What do we know and what has to be ensured?," Energy Policy, Elsevier, vol. 25(7-9), pages 789-802.
    3. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    4. Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
    5. Fabrizio Ascione & Nicola Bianco & Claudio De Stasio & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2017. "Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    6. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    7. Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
    8. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    9. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    10. Andaloro, Antonio P.F. & Salomone, Roberta & Ioppolo, Giuseppe & Andaloro, Laura, 2010. "Energy certification of buildings: A comparative analysis of progress towards implementation in European countries," Energy Policy, Elsevier, vol. 38(10), pages 5840-5866, October.
    11. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    12. Giulia Sonetti & Patrizia Lombardi & Lorenzo Chelleri, 2016. "True Green and Sustainable University Campuses? Toward a Clusters Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    13. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cottafava, Dario & Ascione, Grazia Sveva & Corazza, Laura & Dhir, Amandeep, 2022. "Sustainable development goals research in higher education institutions: An interdisciplinarity assessment through an entropy-based indicator," Journal of Business Research, Elsevier, vol. 151(C), pages 138-155.
    2. Liu, Aaron & Miller, Wendy & Cholette, Michael E. & Ledwich, Gerard & Crompton, Glenn & Li, Yong, 2021. "A multi-dimension clustering-based method for renewable energy investment planning," Renewable Energy, Elsevier, vol. 172(C), pages 651-666.
    3. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    4. C. Genta & S. Favaro & G. Sonetti & G. V. Fracastoro & P. Lombardi, 2022. "Quantitative assessment of environmental impacts at the urban scale: the ecological footprint of a university campus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5826-5845, April.
    5. Ofelia Vera-Piazzini & Massimiliano Scarpa & Fabio Peron, 2022. "Building Energy Simulation and Monitoring: A Review of Graphical Data Representation," Energies, MDPI, vol. 16(1), pages 1-26, December.
    6. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    2. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    3. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    4. Arévalo, Franklim & Barucca, Paolo & Téllez-León, Isela-Elizabeth & Rodríguez, William & Gage, Gerardo & Morales, Raúl, 2022. "Identifying clusters of anomalous payments in the salvadorian payment system," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(1).
    5. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    6. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    7. Isakov , Alexander, 2013. "Stress indicator construction for internal money market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 30(2), pages 77-92.
    8. Mr. Emre Alper & Michal Miktus, 2019. "Digital Connectivity in sub-Saharan Africa: A Comparative Perspective," IMF Working Papers 2019/210, International Monetary Fund.
    9. Gerhard Zucker & Usman Habib & Max Blöchle & Florian Judex & Thomas Leber, 2015. "Sanitation and Analysis of Operation Data in Energy Systems," Energies, MDPI, vol. 8(11), pages 1-19, November.
    10. Job Taminiau & John Byrne, 2020. "City‐scale urban sustainability: Spatiotemporal mapping of distributed solar power for New York City," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    11. Gokturk Poyrazoglu, 2021. "Determination of Price Zones during Transition from Uniform to Zonal Electricity Market: A Case Study for Turkey," Energies, MDPI, vol. 14(4), pages 1-13, February.
    12. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    13. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    14. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    15. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    17. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    18. Alfred Kume & Stephen G Walker, 2021. "The utility of clusters and a Hungarian clustering algorithm," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
    19. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Tomislava Pavić Kramarić & Mirjana Pejić Bach & Ksenija Dumičić & Berislav Žmuk & Maja Mihelja Žaja, 2018. "Exploratory study of insurance companies in selected post-transition countries: non-hierarchical cluster analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 783-807, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1312-:d:148189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.