IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v433y2022ics0096300322005070.html
   My bibliography  Save this article

Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer

Author

Listed:
  • Mao, Xianpeng
  • Yang, Yuning

Abstract

Best sparse tensor rank-1 approximation consists of finding a projection of a given data tensor onto the set of sparse rank-1 tensors, which is important in sparse tensor decomposition and related problems. Existing models used ℓ0 or ℓ1 norms to pursue sparsity. In this work, we first construct a truncated exponential induced regularizer to encourage sparsity, and prove that this regularizer admits a reweighted property. Lower bounds for nonzero entries and upper bounds for the number of nonzero entries of the stationary points of the associated optimization problem are studied. By using the reweighted property of the regularizer, we develop an iteratively reweighted algorithm for solving the problem, and establish its convergence to a stationary point without any assumption. In particular, we show that if the parameter of the regularizer is small enough, then the support of the iterative points will be fixed after finitely many steps. Numerical experiments illustrate the effectiveness of the proposed model and algorithm.

Suggested Citation

  • Mao, Xianpeng & Yang, Yuning, 2022. "Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer," Applied Mathematics and Computation, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322005070
    DOI: 10.1016/j.amc.2022.127433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322005070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianpeng Mao & Yuning Yang, 2022. "Several approximation algorithms for sparse best rank-1 approximation to higher-order tensors," Journal of Global Optimization, Springer, vol. 84(1), pages 229-253, September.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Will Wei Sun & Lexin Li, 2019. "Dynamic Tensor Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1894-1907, October.
    4. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    5. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Baiheng & Wu, Xuedong & Wang, Yaonan & Zhu, Zhiyu, 2024. "Modified hybrid B-spline estimation based on spatial regulator tensor network for burger equation with nonlinear fractional calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 253-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianpeng Mao & Yuning Yang, 2022. "Several approximation algorithms for sparse best rank-1 approximation to higher-order tensors," Journal of Global Optimization, Springer, vol. 84(1), pages 229-253, September.
    2. Ke, Baofang & Zhao, Weihua & Wang, Lei, 2023. "Smoothed tensor quantile regression estimation for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Li, Gen, 2020. "Generalized Co-clustering Analysis via Regularized Alternating Least Squares," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    6. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    7. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    8. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    11. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    12. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    13. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    14. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    15. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    16. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    18. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    19. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    20. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322005070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.