IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i5p1969-1979.html
   My bibliography  Save this article

On biological validity indices for soft clustering algorithms for gene expression data

Author

Listed:
  • Wu, Han-Ming

Abstract

Unsupervised clustering methods such as K-means, hierarchical clustering and fuzzy c-means have been widely applied to the analysis of gene expression data to identify biologically relevant groups of genes. Recent studies have suggested that the incorporation of biological information into validation methods to assess the quality of clustering results might be useful in facilitating biological and biomedical knowledge discoveries. In this study, we generalize two bio-validity indices, the biological homogeneity index and the biological stability index, to quantify the abilities of soft clustering algorithms such as fuzzy c-means and model-based clustering. The results of an evaluation of several existing soft clustering algorithms using simulated and real data sets indicate that the soft versions of the indices provide both better precision and better accuracy than the classical ones. The significance of the proposed indices is also discussed.

Suggested Citation

  • Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1969-1979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00459-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Hornik, Kurt, 2005. "A CLUE for CLUster Ensembles," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i12).
    3. Brock, Guy & Pihur, Vasyl & Datta, Susmita & Datta, Somnath, 2008. "clValid: An R Package for Cluster Validation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i04).
    4. Qiu, Weiliang & Joe, Harry, 2006. "Separation index and partial membership for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 585-603, February.
    5. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    6. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marín, J.M. & Rodríguez-Bernal, M.T., 2012. "Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1898-1907.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    2. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    3. Alessandro Albano & José Luis García-Lapresta & Antonella Plaia & Mariangela Sciandra, 2023. "A family of distances for preference–approvals," Annals of Operations Research, Springer, vol. 323(1), pages 1-29, April.
    4. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    5. Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.
    6. Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
    7. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    8. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    9. Michael C. Thrun & Alfred Ultsch, 2021. "Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 280-312, July.
    10. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.
    11. Abby Flynt & Nema Dean & Rebecca Nugent, 2019. "sARI: a soft agreement measure for class partitions incorporating assignment probabilities," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 303-323, March.
    12. Sara Dolnicar & Friedrich Leisch, 2017. "Using segment level stability to select target segments in data-driven market segmentation studies," Marketing Letters, Springer, vol. 28(3), pages 423-436, September.
    13. Wang, Xiaogang & Qiu, Weiliang & Zamar, Ruben H., 2007. "CLUES: A non-parametric clustering method based on local shrinking," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 286-298, September.
    14. Coraggio, Luca & Coretto, Pietro, 2023. "Selecting the number of clusters, clustering models, and algorithms. A unifying approach based on the quadratic discriminant score," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    15. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    16. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    17. Dario Bruzzese & Domenico Vistocco, 2015. "DESPOTA: DEndrogram Slicing through a PemutatiOn Test Approach," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 285-304, July.
    18. Joeri Hofmans & Eva Ceulemans & Douglas Steinley & Iven Mechelen, 2015. "On the Added Value of Bootstrap Analysis for K-Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 268-284, July.
    19. Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
    20. Johann Kraus & Christoph Müssel & Günther Palm & Hans Kestler, 2011. "Multi-objective selection for collecting cluster alternatives," Computational Statistics, Springer, vol. 26(2), pages 341-353, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1969-1979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.