IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i6p2777-2796.html
   My bibliography  Save this article

Adaptive approximate Bayesian computation for complex models

Author

Listed:
  • Maxime Lenormand
  • Franck Jabot
  • Guillaume Deffuant

Abstract

We propose a new approximate Bayesian computation (ABC) algorithm that aims at minimizing the number of model runs for reaching a given quality of the posterior approximation. This algorithm automatically determines its sequence of tolerance levels and makes use of an easily interpretable stopping criterion. Moreover, it avoids the problem of particle duplication found when using a MCMC kernel. When applied to a toy example and to a complex social model, our algorithm is 2–8 times faster than the three main sequential ABC algorithms currently available. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2777-2796
    DOI: 10.1007/s00180-013-0428-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0428-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0428-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
    2. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    3. Joyce Paul & Marjoram Paul, 2008. "Approximately Sufficient Statistics and Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-18, August.
    4. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    2. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Lorenzo Pacchiardi & Pierre Künzli & Marcel Schöngens & Bastien Chopard & Ritabrata Dutta, 2021. "Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 288-317, May.
    4. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    5. Chen, C.C.-M. & Drovandi, C.C. & Keith, J.M. & Anthony, K. & Caley, M.J. & Mengersen, K.L., 2017. "Bayesian semi-individual based model with approximate Bayesian computation for parameters calibration: Modelling Crown-of-Thorns populations on the Great Barrier Reef," Ecological Modelling, Elsevier, vol. 364(C), pages 113-123.
    6. Lagarrigues, Guillaume & Jabot, Franck & Lafond, Valentine & Courbaud, Benoit, 2015. "Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model," Ecological Modelling, Elsevier, vol. 306(C), pages 278-286.
    7. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    8. Wenlong He & Peng Xia & Xinan Zhang & Tianhai Tian, 2022. "Bayesian Inference Algorithm for Estimating Heterogeneity of Regulatory Mechanisms Based on Single-Cell Data," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
    9. Tatiana Dmitrieva & Kristin McCullough & Nader Ebrahimi, 2021. "Improved approximate Bayesian computation methods via empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1533-1552, June.
    10. Brenda N Vo & Christopher C Drovandi & Anthony N Pettitt & Graeme J Pettet, 2015. "Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    11. Richard G. Everitt, 2018. "Efficient importance sampling in low dimensions using affine arithmetic," Computational Statistics, Springer, vol. 33(1), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    2. repec:dau:papers:123456789/5724 is not listed on IDEAS
    3. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    4. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    5. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    6. Silk Daniel & Filippi Sarah & Stumpf Michael P. H., 2013. "Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 603-618, October.
    7. Filippi Sarah & Barnes Chris P. & Cornebise Julien & Stumpf Michael P.H., 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.
    8. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    9. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    10. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    11. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    12. Jung Hsuan & Marjoram Paul, 2011. "Choice of Summary Statistic Weights in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, September.
    13. Muchmore Patrick & Marjoram Paul, 2015. "Exact likelihood-free Markov chain Monte Carlo for elliptically contoured distributions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 317-332, August.
    14. Owen Jamie & Wilkinson Darren J. & Gillespie Colin S., 2015. "Likelihood free inference for Markov processes: a comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 189-209, April.
    15. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    16. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    17. Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
    18. Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
    19. Brenda N Vo & Christopher C Drovandi & Anthony N Pettitt & Graeme J Pettet, 2015. "Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    20. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    21. Buzbas, Erkan O. & Rosenberg, Noah A., 2015. "AABC: Approximate approximate Bayesian computation for inference in population-genetic models," Theoretical Population Biology, Elsevier, vol. 99(C), pages 31-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2777-2796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.