IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v31y2016i1d10.1007_s00180-015-0633-3.html
   My bibliography  Save this article

Two-sample homogeneity tests based on divergence measures

Author

Listed:
  • Max Wornowizki

    (Technische Universität Dortmund)

  • Roland Fried

    (Technische Universität Dortmund)

Abstract

The concept of f-divergences introduced by Ali and Silvey (J R Stat Soc (B) 28:131–142, 1996) provides a rich set of distance like measures between pairs of distributions. Divergences do not focus on certain moments of random variables, but rather consider discrepancies between the corresponding probability density functions. Thus, two-sample tests based on these measures can detect arbitrary alternatives when testing the equality of the distributions. We treat the problem of divergence estimation as well as the subsequent testing for the homogeneity of two-samples. In particular, we propose a nonparametric estimator for f-divergences in the case of continuous distributions, which is based on kernel density estimation and spline smoothing. As we show in extensive simulations, the new method performs stable and quite well in comparison to several existing non- and semiparametric divergence estimators. Furthermore, we tackle the two-sample homogeneity problem using permutation tests based on various divergence estimators. The methods are compared to an asymptotic divergence test as well as to several traditional parametric and nonparametric procedures under different distributional assumptions and alternatives in simulations. It turns out that divergence based methods detect discrepancies between distributions more often than traditional methods if the distributions do not differ in location only. The findings are illustrated on ion mobility spectrometry data.

Suggested Citation

  • Max Wornowizki & Roland Fried, 2016. "Two-sample homogeneity tests based on divergence measures," Computational Statistics, Springer, vol. 31(1), pages 291-313, March.
  • Handle: RePEc:spr:compst:v:31:y:2016:i:1:d:10.1007_s00180-015-0633-3
    DOI: 10.1007/s00180-015-0633-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-015-0633-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-015-0633-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hervé Cardot & Luboš Prchal & Pascal Sarda, 2007. "No effect and lack-of-fit permutation tests for functional regression," Computational Statistics, Springer, vol. 22(3), pages 371-390, September.
    2. Yayuan Zhu & Jingjing Wu & Xuewen Lu, 2013. "Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data," Computational Statistics, Springer, vol. 28(6), pages 2495-2518, December.
    3. Sooncheol Sohn & Byoung Jung & Myoungshic Jhun, 2012. "Permutation tests using least distance estimator in the multivariate regression model," Computational Statistics, Springer, vol. 27(2), pages 191-201, June.
    4. Aylin Alin & Serdar Kurt, 2008. "Ordinary and penalized minimum power-divergence estimators in two-way contingency tables," Computational Statistics, Springer, vol. 23(3), pages 455-468, July.
    5. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    6. Achim Zeileis & Torsten Hothorn, 2013. "A toolbox of permutation tests for structural change," Statistical Papers, Springer, vol. 54(4), pages 931-954, November.
    7. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    2. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    3. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    4. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    5. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    6. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    7. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    8. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    9. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    10. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    11. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    12. Wagner Martin & Zeileis Achim, 2019. "Heterogeneity and Spatial Dependence of Regional Growth in the EU: A Recursive Partitioning Approach," German Economic Review, De Gruyter, vol. 20(1), pages 67-82, February.
    13. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    14. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    15. Ro Pak & Ayanendranath Basu, 1998. "Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 503-521, September.
    16. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    17. David T. Frazier, 2020. "Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach," Papers 2006.14126, arXiv.org.
    18. A. Basu & S. Sarkar, 1997. "Robust estimation in the errors variables model via weighted likelihood estimating equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 187-203, June.
    19. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.
    20. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:1:d:10.1007_s00180-015-0633-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.