IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i6p2495-2518.html
   My bibliography  Save this article

Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data

Author

Listed:
  • Yayuan Zhu
  • Jingjing Wu
  • Xuewen Lu

Abstract

Efficiency and robustness are two essential concerns on statistical estimation. Unfortunately, it was widely accepted that there existed a contradiction between achieving efficiency and robustness simultaneously. For parametric models with complete data, the minimum Hellinger distance estimation introduced by Beran (Ann Stat 5:445–463, 1977 ) has been shown that it can reconcile this contradiction. Because data in biostatistics, actuarial science or economics are often subject to censoring and even involve a fraction of long-term survivors, our study aims to extend the minimum Hellinger distance estimation to a two-sample semiparametric cure rate model with right-censored survival data. The asymptotic properties such as consistency, efficiency, normality, and robustness of the proposed estimator have been considered and its performances are examined via simulation studies in comparison with those of the maximum semiparametric conditional likelihood estimator introduced by Shen et al. (J Am Stat Assoc 102:1235–1244, 2007 ). Finally, our method is illustrated by analyzing a real data set: Bone Marrow Transplant Data. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Yayuan Zhu & Jingjing Wu & Xuewen Lu, 2013. "Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data," Computational Statistics, Springer, vol. 28(6), pages 2495-2518, December.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2495-2518
    DOI: 10.1007/s00180-013-0416-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0416-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0416-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woo, Mi-Ja & Sriram, T.N., 2006. "Robust Estimation of Mixture Complexity," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1475-1486, December.
    2. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    3. Diehl, Sabine & Stute, Winfried, 1988. "Kernel density and hazard function estimation in the presence of censoring," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 299-310, May.
    4. Shen, Yu & Qin, Jing & Costantino, Joseph P., 2007. "Inference of Tamoxifen's Effects on Prevention of Breast Cancer From a Randomized Controlled Trial," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1235-1244, December.
    5. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Wornowizki & Roland Fried, 2016. "Two-sample homogeneity tests based on divergence measures," Computational Statistics, Springer, vol. 31(1), pages 291-313, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    2. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    3. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    4. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    5. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    6. Junshan Shen & Shuyuan He, 2007. "Empirical likelihood for the difference of quantiles under censorship," Statistical Papers, Springer, vol. 48(3), pages 437-457, September.
    7. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    8. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    9. Cheng, Fuxia, 2012. "Maximum deviation of error density estimators in censored linear regression," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1657-1664.
    10. Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.
    11. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    12. Zhou, Yong & Yip, Paul S. F., 1999. "A Strong Representation of the Product-Limit Estimator for Left Truncated and Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 261-280, May.
    13. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    14. Junshan Shen & Shuyuan He, 2008. "Empirical likelihood confidence intervals for hazard and density functions under right censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 575-589, September.
    15. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    16. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    17. Wang, Qi-Hua, 1999. "Some bounds for the error of an estimator of the hazard function with censored data," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 319-326, October.
    18. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    19. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    20. Kasahara, Hiroyuki & 笠原, 博幸 & Shimotsu, Katsumi & 下津, 克己, 2010. "Nonparametric Identification of Multivariate Mixtures," Discussion Papers 2010-09, Graduate School of Economics, Hitotsubashi University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2495-2518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.