IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v45y2004i2p105-124.html
   My bibliography  Save this article

The iteratively reweighted estimating equation in minimum distance problems

Author

Listed:
  • Basu, Ayanendranath
  • Lindsay, Bruce G.

Abstract

No abstract is available for this item.

Suggested Citation

  • Basu, Ayanendranath & Lindsay, Bruce G., 2004. "The iteratively reweighted estimating equation in minimum distance problems," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 105-124, March.
  • Handle: RePEc:eee:csdana:v:45:y:2004:i:2:p:105-124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00326-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    2. N/A, 1989. "Comments," ILR Review, Cornell University, ILR School, vol. 43(1), pages 89-102, October.
    3. Cao, Ricardo & Cuevas, Antonio & Fraiman, Ricardo, 1995. "Minimum distance density-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 611-631, December.
    4. Marron, J. S., 1989. "Comments on a data based bandwidth selector," Computational Statistics & Data Analysis, Elsevier, vol. 8(2), pages 155-170, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong, 2007. "Minimum disparity computation via the iteratively reweighted least integrated squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5662-5672, August.
    2. Demetrescu, Matei, 2006. "An extension of the Gauss-Newton algorithm for estimation under asymmetric loss," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 379-401, January.
    3. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    4. Adhidev Biswas & Suman Majumder & Pratim Guha Niyogi & Ayanendranath Basu, 2021. "A Weighted Likelihood Approach to Problems in Survival Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 466-492, November.
    5. Mandal, Abhijit & Basu, Ayanendranath, 2013. "Minimum disparity estimation: Improved efficiency through inlier modification," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 71-86.
    6. Ferrari, Davide & Zheng, Chao, 2016. "Reliable inference for complex models by discriminative composite likelihood estimation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 68-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. M. Salinas-Jimenez, 2003. "Technological change, efficiency gains and capital accumulation in labour productivity growth and convergence: an application to the Spanish regions," Applied Economics, Taylor & Francis Journals, vol. 35(17), pages 1839-1851.
    2. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    3. Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
    4. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
    5. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    6. Mercedes Fernandez Sau & Daniela Rodriguez, 2018. "Minimum distance method for directional data and outlier detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 587-603, September.
    7. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    8. Norman Henderson & Ian Bateman, 1995. "Empirical and public choice evidence for hyperbolic social discount rates and the implications for intergenerational discounting," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(4), pages 413-423, June.
    9. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    10. Jaime de Melo & David Tarr, 2015. "VERs under imperfect competition and foreign direct investment: A case study of the US–Japan auto VER," World Scientific Book Chapters, in: Modeling Developing Countries' Policies in General Equilibrium, chapter 22, pages 461-483, World Scientific Publishing Co. Pte. Ltd..
    11. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    12. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    14. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    15. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    16. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    17. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    18. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    19. Sancharee Basak & Ayanendranath Basu, 2024. "The Extended Bregman Divergence and Parametric Estimation in Continuous Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 333-365, November.
    20. V. Kolegov, 2013. "Peculiarities of RIA institutionalization at the regional level. RIA introduction in Moscow City Government," Public administration issues, Higher School of Economics, issue 2, pages 141-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:45:y:2004:i:2:p:105-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.