Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferdinand Österreicher & Igor Vajda, 2003. "A new class of metric divergences on probability spaces and its applicability in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 639-653, September.
- Ro Pak & Ayanendranath Basu, 1998. "Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 503-521, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
- Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
- Max Wornowizki & Roland Fried, 2016. "Two-sample homogeneity tests based on divergence measures," Computational Statistics, Springer, vol. 31(1), pages 291-313, March.
- Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
- Basu, Ayanendranath & Lindsay, Bruce G., 2004. "The iteratively reweighted estimating equation in minimum distance problems," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 105-124, March.
- Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
- Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
- Abhik Ghosh & Ayanendranath Basu, 2017. "The minimum S-divergence estimator under continuous models: the Basu–Lindsay approach," Statistical Papers, Springer, vol. 58(2), pages 341-372, June.
- Altissimo, Filippo & Mele, Antonio, 2004.
"Simulated nonparametric estimation of continuous time models of asset prices and returns,"
LSE Research Online Documents on Economics
24674, London School of Economics and Political Science, LSE Library.
- Antonio Mele & Filippo Altissimo, 2004. "Simulated Nonparametric Estimation of Continuous Time Models of Asset Prices and Returns," FMG Discussion Papers dp476, Financial Markets Group.
- Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
- Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
- Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
- M. Ryan Haley & Todd B. Walker, 2010.
"Alternative tilts for nonparametric option pricing,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
- Walker, Todd B & Haley, M. Ryan, 2009. "Alternative Tilts for Nonparametric Option Pricing," MPRA Paper 17140, University Library of Munich, Germany.
- Sancharee Basak & Ayanendranath Basu, 2024. "The Extended Bregman Divergence and Parametric Estimation in Continuous Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 333-365, November.
- Broniatowski, Michel & Keziou, Amor, 2009. "Parametric estimation and tests through divergences and the duality technique," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 16-36, January.
- Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
- Ferdinand Österreicher & Igor Vajda, 2003. "A new class of metric divergences on probability spaces and its applicability in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 639-653, September.
- Suman Majumder & Adhidev Biswas & Tania Roy & Subir Kumar Bhandari & Ayanendranath Basu, 2021. "Statistical inference based on a new weighted likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 97-120, January.
- Raúl Jiménz & Yongzhao Shao, 2001. "On robustness and efficiency of minimum divergence estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 241-248, December.
- Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
More about this item
Keywords
Asymptotic efficiency Hellinger distance Kernel density;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:26:y:1996:i:3:p:263-269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.