IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v27y2018i4d10.1007_s10260-017-0416-9.html
   My bibliography  Save this article

Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini

Author

Listed:
  • Claudio Agostinelli

    (University of Trento)

  • Luca Greco

    (University of Sannio)

Abstract

Andrea Cerioli, Marco Riani, Anthony Atkinson, Aldo Corbellini (CRAC hereafter) have presented a powerful methodology aimed at improving robust fitting and related diagnostic tools. Monitoring is a very flexible approach that allows to tune the selected robust technique by looking at a whole movie of the available data. We contribute to the discussion of CRAC’s paper by applying the principle of monitoring to multivariate weighted likelihood estimation. The reliability of the method is illustrated through the analysis of the datasets taken from CRAC’ s paper.

Suggested Citation

  • Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
  • Handle: RePEc:spr:stmapp:v:27:y:2018:i:4:d:10.1007_s10260-017-0416-9
    DOI: 10.1007/s10260-017-0416-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0416-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0416-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agostinelli, Claudio, 2002. "Robust model selection in regression via weighted likelihood methodology," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 289-300, February.
    2. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    3. Agostinelli, Claudio & Markatou, Marianthi, 1998. "A one-step robust estimator for regression based on the weighted likelihood reweighting scheme," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 341-350, March.
    4. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suman Majumder & Adhidev Biswas & Tania Roy & Subir Kumar Bhandari & Ayanendranath Basu, 2021. "Statistical inference based on a new weighted likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 97-120, January.
    2. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    3. Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
    4. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    5. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    6. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    7. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    8. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    9. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    10. Beste Hamiye Beyaztas & Soutir Bandyopadhyay & Abhijit Mandal, 2021. "A robust specification test in linear panel data models," Papers 2104.07723, arXiv.org.
    11. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    12. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    13. Abdul Wahid & Dost Muhammad Khan & Ijaz Hussain, 2017. "Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    14. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    15. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    16. Ro Pak & Ayanendranath Basu, 1998. "Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 503-521, September.
    17. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.
    18. Agostinelli, Claudio, 2007. "Robust estimation for circular data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5867-5875, August.
    19. Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.
    20. Basu, Ayanendranath & Lindsay, Bruce G., 2004. "The iteratively reweighted estimating equation in minimum distance problems," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 105-124, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:27:y:2018:i:4:d:10.1007_s10260-017-0416-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.