IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i1d10.1007_s00184-020-00778-y.html
   My bibliography  Save this article

Statistical inference based on a new weighted likelihood approach

Author

Listed:
  • Suman Majumder

    (North Carolina State University)

  • Adhidev Biswas

    (Indian Statistical Institute)

  • Tania Roy

    (Novartis Healthcare Private Limited)

  • Subir Kumar Bhandari

    (Indian Statistical Institute)

  • Ayanendranath Basu

    (Indian Statistical Institute)

Abstract

We discuss a new weighted likelihood method for robust parametric estimation. The method is motivated by the need for generating a simple estimation strategy which provides a robust solution that is simultaneously fully efficient when the model is correctly specified. This is achieved by appropriately weighting the score function at each observation in the maximum likelihood score equation. The weight function determines the compatibility of each observation with the model in relation to the remaining observations and applies a downweighting only if it is necessary, rather than automatically downweighting a proportion of the observations all the time. This allows the estimators to retain full asymptotic efficiency at the model. We establish all the theoretical properties of the proposed estimators and substantiate the theory developed through simulation and real data examples. Our approach provides an alternative to the weighted likelihood method of Markatou et al. (J Stat Plan Inference 57(2):215–232, 1997; J Am Stat Assoc 93(442):740–750, 1998).

Suggested Citation

  • Suman Majumder & Adhidev Biswas & Tania Roy & Subir Kumar Bhandari & Ayanendranath Basu, 2021. "Statistical inference based on a new weighted likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 97-120, January.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:1:d:10.1007_s00184-020-00778-y
    DOI: 10.1007/s00184-020-00778-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00778-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00778-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agostinelli, Claudio, 2002. "Robust model selection in regression via weighted likelihood methodology," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 289-300, February.
    2. Agostinelli, Claudio & Markatou, Marianthi, 1998. "A one-step robust estimator for regression based on the weighted likelihood reweighting scheme," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 341-350, March.
    3. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    4. Agostinelli, Claudio, 2007. "Robust estimation for circular data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5867-5875, August.
    5. C. Agostinelli, 2002. "Robust stepwise regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 825-840.
    6. Christian Léger & Joseph Romano, 1990. "Bootstrap choice of tuning parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(4), pages 709-735, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
    2. Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
    3. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    4. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    5. Beste Hamiye Beyaztas & Soutir Bandyopadhyay & Abhijit Mandal, 2021. "A robust specification test in linear panel data models," Papers 2104.07723, arXiv.org.
    6. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    7. Mercedes Fernandez Sau & Daniela Rodriguez, 2018. "Minimum distance method for directional data and outlier detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 587-603, September.
    8. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    9. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    10. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    11. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    12. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    13. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    14. Tomasz Pilewicz & Anna Mempel Sniezyk & Niki Derlukiewicz & Malgorzata Godlewska, 2021. "Attributes of Local Government Managers – What Matters in Local Entrepreneurship Context?," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 351-369.
    15. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    16. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    17. C. Agostinelli, 2002. "Robust stepwise regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 825-840.
    18. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    19. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    20. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:1:d:10.1007_s00184-020-00778-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.