IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v15y2000i4d10.1007_s001800000047.html
   My bibliography  Save this article

A Comparison of Regression Spline Smoothing Procedures

Author

Listed:
  • M. P. Wand

    (Harvard University)

Abstract

Summary Regression spline smoothing involves modelling a regression function as a piecewise polynomial with a high number of pieces relative to the sample size. Because the number of possible models is so large, efficient strategies for choosing among them are required. In this paper we review approaches to this problem and compare them through a simulation study. For simplicity and conciseness we restrict attention to the univariate smoothing setting with Gaussian noise and the truncated polynomial regression spline basis.

Suggested Citation

  • M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
  • Handle: RePEc:spr:compst:v:15:y:2000:i:4:d:10.1007_s001800000047
    DOI: 10.1007/s001800000047
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s001800000047
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s001800000047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    2. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    3. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    4. Ciprian Crainiceanu & David Ruppert & Raymond Carroll, 2004. "Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1061, Berkeley Electronic Press.
    5. Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
    6. Nielsen, J.D. & Dean, C.B., 2008. "Adaptive functional mixed NHPP models for the analysis of recurrent event panel data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3670-3685, March.
    7. Robert Mohr & Maximilian Coblenz & Peter Kirst, 2023. "Globally optimal univariate spline approximations," Computational Optimization and Applications, Springer, vol. 85(2), pages 409-439, June.
    8. Carlos E. Melo & Oscar O. Melo & Jorge Mateu, 2018. "A distance-based model for spatial prediction using radial basis functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 263-288, April.
    9. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    10. Gerhard Tutz, 2022. "Item Response Thresholds Models: A General Class of Models for Varying Types of Items," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1238-1269, December.
    11. Soumya D. Mohanty & Ethan Fahnestock, 2021. "Adaptive spline fitting with particle swarm optimization," Computational Statistics, Springer, vol. 36(1), pages 155-191, March.
    12. Lee, Thomas C. M., 2003. "Smoothing parameter selection for smoothing splines: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 139-148, February.
    13. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    14. Maximilian Osterhaus, 2024. "A Sparse Grid Approach for the Nonparametric Estimation of High-Dimensional Random Coefficient Models," Papers 2408.07185, arXiv.org.
    15. Men, Tianli & Li, Yan-Fu & Ji, Yujun & Zhang, Xinliang & Liu, Pengfei, 2022. "Health assessment of high-speed train wheels based on group-profile data," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    16. Cao, Jiguo & Ramsay, James O., 2009. "Generalized profiling estimation for global and adaptive penalized spline smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2550-2562, May.
    17. Hervé Cardot, 2002. "Local roughness penalties for regression splines," Computational Statistics, Springer, vol. 17(1), pages 89-102, March.
    18. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pena, Daniel & Redondas, Dolores, 2006. "Bayesian curve estimation by model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 688-709, February.
    2. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    3. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    4. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    5. Feng Li & Mattias Villani, 2013. "Efficient Bayesian Multivariate Surface Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 706-723, December.
    6. Eklund, Jana & Karlsson, Sune, 2007. "Computational Efficiency in Bayesian Model and Variable Selection," Working Papers 2007:4, Örebro University, School of Business.
    7. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
    8. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2007. "Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures," Working Paper Series 211, Sveriges Riksbank (Central Bank of Sweden).
    9. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    10. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    11. Lee, Thomas C. M., 2000. "Regression spline smoothing using the minimum description length principle," Statistics & Probability Letters, Elsevier, vol. 48(1), pages 71-82, May.
    12. Stefan Lang & Eva-Maria Pronk & Ludwig Fahrmeir, 2002. "Function estimation with locally adaptive dynamic models," Computational Statistics, Springer, vol. 17(4), pages 479-499, December.
    13. Molinari, Nicolas & Durand, Jean-Francois & Sabatier, Robert, 2004. "Bounded optimal knots for regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 159-178, March.
    14. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
    15. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    16. Guarin, Alexander & Lozano, Ignacio, 2017. "Credit funding and banking fragility: A forecasting model for emerging economies," Emerging Markets Review, Elsevier, vol. 32(C), pages 168-189.
    17. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    18. Smith, Michael & Kohn, Robert & Mathur, Sharat K., 2000. "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Journal of Business Research, Elsevier, vol. 49(3), pages 229-244, September.
    19. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    20. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:15:y:2000:i:4:d:10.1007_s001800000047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.