IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v17y2002i1d10.1007_s001800200092.html
   My bibliography  Save this article

Local roughness penalties for regression splines

Author

Listed:
  • Hervé Cardot

    (INRA Toulouse)

Abstract

Summary This paper introduces a new nonparametric estimator of the regression based on penalized regression splines. Local roughness penalties that rely on local support properties of B-splines are introduced in order to deal with the spatial heterogeneity of the function to be estimated. This estimator is shown to attain optimal rates of convergence. Then its good performances are confirmed on a simulation study.

Suggested Citation

  • Hervé Cardot, 2002. "Local roughness penalties for regression splines," Computational Statistics, Springer, vol. 17(1), pages 89-102, March.
  • Handle: RePEc:spr:compst:v:17:y:2002:i:1:d:10.1007_s001800200092
    DOI: 10.1007/s001800200092
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s001800200092
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s001800200092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diack, C.A.T. & Thomas-Agnan, C., 1996. "A Nonparametric Test of The Non-Convexity of Regression," Papers 976.427, Toulouse - GREMAQ.
    2. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    3. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    4. Besse, Philippe C. & Cardot, Herve & Ferraty, Frederic, 1997. "Simultaneous non-parametric regressions of unbalanced longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 255-270, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    2. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    3. Cao, Jiguo & Ramsay, James O., 2009. "Generalized profiling estimation for global and adaptive penalized spline smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2550-2562, May.
    4. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    5. Pena, Daniel & Redondas, Dolores, 2006. "Bayesian curve estimation by model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 688-709, February.
    6. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    7. Lindstrom, Mary J., 2002. "Bayesian estimation of free-knot splines using reversible jumps," Computational Statistics & Data Analysis, Elsevier, vol. 41(2), pages 255-269, December.
    8. Ciprian Crainiceanu & David Ruppert & Raymond Carroll, 2004. "Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1061, Berkeley Electronic Press.
    9. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    10. Carlos E. Melo & Oscar O. Melo & Jorge Mateu, 2018. "A distance-based model for spatial prediction using radial basis functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 263-288, April.
    11. Amiri, Aboubacar & Crambes, Christophe & Thiam, Baba, 2014. "Recursive estimation of nonparametric regression with functional covariate," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 154-172.
    12. Elcin Koc & Cem Iyigun, 2014. "Restructuring forward step of MARS algorithm using a new knot selection procedure based on a mapping approach," Journal of Global Optimization, Springer, vol. 60(1), pages 79-102, September.
    13. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    14. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    15. Diack, Cheikh A. T., 1998. "A consistent nonparametric test of the convexity of regression based on least squares splines," SFB 373 Discussion Papers 1998,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Boracchi, Patrizia & Biganzoli, Elia & Marubini, Ettore, 2003. "Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 243-262, February.
    17. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    18. Nanjing Jian & Shane G. Henderson, 2020. "Estimating the Probability that a Function Observed with Noise Is Convex," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 376-389, April.
    19. Basna, Rani & Nassar, Hiba & Podgórski, Krzysztof, 2022. "Data driven orthogonal basis selection for functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Cardot, Hervé, 2002. "Spatially Adaptive Splines for Statistical Linear Inverse Problems," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 100-119, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:17:y:2002:i:1:d:10.1007_s001800200092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.