IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-024-00505-2.html
   My bibliography  Save this article

Using interpolated implied volatility for analysing exogenous market changes

Author

Listed:
  • Matúš Maciak

    (Charles University)

  • Sebastiano Vitali

    (University of Bergamo)

Abstract

This paper focuses on market changes due to exogenous effects. The standard implied volatility is shown to be insufficient for a proper detection and analysis of this type of risk. This is mainly because such changes are usually dominated by endogenous effects coming from a specific trading mechanism or natural market dynamics. A methodologically unique approach based on artificial options that always have a constant time to maturity is proposed and explicitly defined. The key principle is to use interpolated volatilities, which can effectively eliminate instabilities due to the natural market dynamics while the changes caused by the exogenous causes are preserved. Formal statistical tests for distinguishing significant effects are proposed under different theoretical and practical scenarios. Statistical theory, computational and algorithmic details, and comprehensive empirical comparisons together with a real data illustration are all presented.

Suggested Citation

  • Matúš Maciak & Sebastiano Vitali, 2024. "Using interpolated implied volatility for analysing exogenous market changes," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00505-2
    DOI: 10.1007/s10287-024-00505-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-024-00505-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-024-00505-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
    2. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    3. Peter Nystrup & Bo William Hansen & Henrik Madsen & Erik Lindström, 2016. "Detecting change points in VIX and S&P 500: A new approach to dynamic asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 361-374, September.
    4. Roland Fuss & Ferdinand Mager & Holger Wohlenberg & Lu Zhao, 2011. "The impact of macroeconomic announcements on implied volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1571-1580.
    5. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    6. M. Benko & M. Fengler & W. Härdle & M. Kopa, 2007. "On extracting information implied in options," Computational Statistics, Springer, vol. 22(4), pages 543-553, December.
    7. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    8. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    9. Huisu Jang & Jaewook Lee, 2019. "Generative Bayesian neural network model for risk-neutral pricing of American index options," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 587-603, April.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Guhathakurta, Kousik & Bhattacharya, Basabi & Chowdhury, A. Roy, 2010. "Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1874-1882.
    12. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    13. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    14. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
    15. Florian Ielpo & Guillaume Simon, 2010. "Mean-reversion properties of implied volatilities," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 587-610.
    16. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    17. Fan, Yingying & Fan, Jianqing, 2011. "Testing and detecting jumps based on a discretely observed process," Journal of Econometrics, Elsevier, vol. 164(2), pages 331-344, October.
    18. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    19. Riccardo Marcaccioli & Jean-Philippe Bouchaud & Michael Benzaquen, 2022. "Exogenous and Endogenous Price Jumps Belong to Different Dynamical Classes," Post-Print hal-03378876, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    2. Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
    3. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    4. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    5. Bender Christian & Thiel Matthias, 2020. "Arbitrage-free interpolation of call option prices," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 55-78, January.
    6. Hollstein, Fabian & Wese Simen, Chardin, 2020. "Variance risk: A bird’s eye view," Journal of Econometrics, Elsevier, vol. 215(2), pages 517-535.
    7. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    8. Zdeněk Drábek & Miloš Kopa & Matúš Maciak & Michal Pešta & Sebastiano Vitali, 2023. "Investment disputes and their explicit role in option market uncertainty and overall risk instability," Computational Management Science, Springer, vol. 20(1), pages 1-25, December.
    9. Stefano Giglio & Ian Dew-Becker & David Berger, 2016. "Contractionary Volatility or Volatile Contractions?," 2016 Meeting Papers 673, Society for Economic Dynamics.
    10. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
    11. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    12. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    13. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    14. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    15. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    16. Romuald N. Kenmoe S & Carine D. Tafou, 2014. "The Implied Volatility Analysis: The South African Experience," Papers 1403.5965, arXiv.org.
    17. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    18. Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market instability and technical trading at high frequency: Evidence from NASDAQ stocks," Economic Modelling, Elsevier, vol. 102(C).
    19. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    20. Bianconi, Marcelo & MacLachlan, Scott & Sammon, Marco, 2015. "Implied volatility and the risk-free rate of return in options markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00505-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.