IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v37y2020i1-2p55-78n2.html
   My bibliography  Save this article

Arbitrage-free interpolation of call option prices

Author

Listed:
  • Bender Christian

    (Department of Mathematics, Saarland University, Postfach 151150, 66041Saarbrücken, Germany)

  • Thiel Matthias

    (Department of Mathematics, Saarland University, Postfach 151150, 66041Saarbrücken, Germany)

Abstract

In this paper, we introduce a new interpolation method for call option prices and implied volatilities with respect to the strike, which first generates, for fixed maturity, an implied volatility curve that is smooth and free of static arbitrage. Our interpolation method is based on a distortion of the call price function of an arbitrage-free financial “reference” model of one’s choice. It reproduces the call prices of the reference model if the market data is compatible with the model. Given a set of call prices for different strikes and maturities, we can construct a call price surface by using this one-dimensional interpolation method on every input maturity and interpolating the generated curves in the maturity dimension. We obtain the algorithm of N. Kahalé [An arbitrage-free interpolation of volatilities, Risk 17 2004, 5, 102–106] as a special case, when applying the Black–Scholes model as reference model.

Suggested Citation

  • Bender Christian & Thiel Matthias, 2020. "Arbitrage-free interpolation of call option prices," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 55-78, January.
  • Handle: RePEc:bpj:strimo:v:37:y:2020:i:1-2:p:55-78:n:2
    DOI: 10.1515/strm-2018-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/strm-2018-0026
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/strm-2018-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    2. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    3. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    4. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Greg Orosi, 2015. "Arbitrage‐free call option surface construction using regression splines," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 515-527, July.
    7. Márcio Poletti Laurini, 2011. "Imposing no‐arbitrage conditions in implied volatilities using constrained smoothing splines," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(6), pages 649-659, November.
    8. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    9. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    10. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    11. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    3. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    4. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    5. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
    6. Pierre M. Blacque-Florentin & Badr Missaoui, 2015. "Nonparametric and arbitrage-free construction of call surfaces using l1-recovery," Papers 1506.06997, arXiv.org, revised Aug 2016.
    7. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    8. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    9. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    10. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    11. Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
    12. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    13. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    14. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    17. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    18. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    19. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    20. repec:hal:wpaper:hal-03715921 is not listed on IDEAS
    21. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:37:y:2020:i:1-2:p:55-78:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.