IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v15y2009i4d10.1007_s10588-009-9063-5.html
   My bibliography  Save this article

Robustness of centrality measures under uncertainty: Examining the role of network topology

Author

Listed:
  • Terrill L. Frantz

    (Carnegie Mellon University)

  • Marcelo Cataldo

    (Two North Shore Center)

  • Kathleen M. Carley

    (Carnegie Mellon University)

Abstract

This study investigates the topological form of a network and its impact on the uncertainty entrenched in descriptive measures computed from observed social network data, given ubiquitous data-error. We investigate what influence a network’s topology, in conjunction with the type and amount of error, has on the ability of a measure, derived from observed data, to correctly approximate the same of the ground-truth network. By way of a controlled experiment, we reveal the differing effect that observation error has on measures of centrality and local clustering across several network topologies: uniform random, small-world, core-periphery, scale-free, and cellular. Beyond what is already known about the impact of data uncertainty, we found that the topology of a social network is, indeed, germane to the accuracy of these measures. In particular, our experiments show that the accuracy of identifying the prestigious, or key, actors in a network—according observed data—is considerably predisposed by the topology of the ground-truth network.

Suggested Citation

  • Terrill L. Frantz & Marcelo Cataldo & Kathleen M. Carley, 2009. "Robustness of centrality measures under uncertainty: Examining the role of network topology," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 303-328, December.
  • Handle: RePEc:spr:comaot:v:15:y:2009:i:4:d:10.1007_s10588-009-9063-5
    DOI: 10.1007/s10588-009-9063-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-009-9063-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-009-9063-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    3. Mayntz, Renate, 2004. "Organizational Forms of Terrorism: Hierarchy, Network, or a Type sui generis?," MPIfG Discussion Paper 04/4, Max Planck Institute for the Study of Societies.
    4. P.-J. Kim & H. Jeong, 2007. "Reliability of rank order in sampled networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(1), pages 109-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianjun Lu & Shozo Tokinaga, 2016. "Cluster fluctuation in two-dimensional lattices with local interactions," Computational and Mathematical Organization Theory, Springer, vol. 22(2), pages 237-259, June.
    2. Virginie Masson & Kelsey Wilkins, 2013. "The Small World of 9/11 and the Implications for Network Dismantlement Strategies," School of Economics and Public Policy Working Papers 2013-08, University of Adelaide, School of Economics and Public Policy.
    3. Sho Tsugawa & Yukihiro Matsumoto & Hiroyuki Ohsaki, 2015. "On the robustness of centrality measures against link weight quantization in social networks," Computational and Mathematical Organization Theory, Springer, vol. 21(3), pages 318-339, September.
    4. Andrea Landherr & Bettina Friedl & Julia Heidemann, 2010. "A Critical Review of Centrality Measures in Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(6), pages 371-385, December.
    5. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
    6. Jianjun Lu & Shozo Tokinaga, 2013. "Analysis of cluster formations on planer cells based on genetic programming," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 426-445, December.
    7. Zhang, Xin-Jie & Tang, Yong & Xiong, Jason & Wang, Wei-Jia & Zhang, Yi-Cheng, 2020. "Ranking game on networks: The evolution of hierarchical society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Yu Zhang & Yu Wu, 2012. "How behaviors spread in dynamic social networks," Computational and Mathematical Organization Theory, Springer, vol. 18(4), pages 419-444, December.
    9. Tsugawa, Sho & Kimura, Kazuma, 2018. "Identifying influencers from sampled social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 294-303.
    10. Dunn, Adam G. & Westbrook, Johanna I., 2011. "Interpreting social network metrics in healthcare organisations: A review and guide to validating small networks," Social Science & Medicine, Elsevier, vol. 72(7), pages 1064-1068, April.
    11. Stella, Massimo, 2020. "Multiplex networks quantify robustness of the mental lexicon to catastrophic concept failures, aphasic degradation and ageing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Arun Advani & Bansi Malde, 2014. "Empirical methods for networks data: social effects, network formation and measurement error," IFS Working Papers W14/34, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    4. David L. Alderson, 2008. "OR FORUM---Catching the “Network Science” Bug: Insight and Opportunity for the Operations Researcher," Operations Research, INFORMS, vol. 56(5), pages 1047-1065, October.
    5. Michele Giusfredi & Franco Bagnoli, 2020. "From Color-Avoiding to Color-Favored Percolation in Diluted Lattices," Future Internet, MDPI, vol. 12(8), pages 1-12, August.
    6. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    7. Beckert, Jens & Ebbinghaus, Bernhard & Hassel, Anke & Manow, Philip (ed.), 2006. "Transformationen des Kapitalismus: Festschrift für Wolfgang Streeck zum sechzigsten Geburtstag," Schriften aus dem Max-Planck-Institut für Gesellschaftsforschung Köln, Max Planck Institute for the Study of Societies, volume 57, number 57.
    8. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    9. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    10. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    11. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    12. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    13. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    14. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    15. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    16. Sanjeev Goyal & Adrien Vigier, 2014. "Attack, Defence, and Contagion in Networks," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1518-1542.
    17. Britta Hoyer & Kris De Jaegher, 2023. "Network disruption and the common-enemy effect," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 117-155, March.
    18. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    19. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    20. Diana Tampu & Carmen Costea, 2013. "Why society is a complex problem? A review of Philip Ball's book: Meeting Twentyfirst Century Challenges with a New Kind of Science," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 2(1), pages 80-89, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:15:y:2009:i:4:d:10.1007_s10588-009-9063-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.