IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.12921.html
   My bibliography  Save this paper

Network regression and supervised centrality estimation

Author

Listed:
  • Junhui Cai
  • Dan Yang
  • Wu Zhu
  • Haipeng Shen
  • Linda Zhao

Abstract

The centrality in a network is a popular metric for agents' network positions and is often used in regression models to model the network effect on an outcome variable of interest. In empirical studies, researchers often adopt a two-stage procedure to first estimate the centrality and then infer the network effect using the estimated centrality. Despite its prevalent adoption, this two-stage procedure lacks theoretical backing and can fail in both estimation and inference. We, therefore, propose a unified framework, under which we prove the shortcomings of the two-stage in centrality estimation and the undesirable consequences in the regression. We then propose a novel supervised network centrality estimation (SuperCENT) methodology that simultaneously yields superior estimations of the centrality and the network effect and provides valid and narrower confidence intervals than those from the two-stage. We showcase the superiority of SuperCENT in predicting the currency risk premium based on the global trade network.

Suggested Citation

  • Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
  • Handle: RePEc:arx:papers:2111.12921
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.12921
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    2. Alessandra Fogli & Laura Veldkamp, 2021. "Germs, Social Networks, and Growth [Unbundling Institutions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(3), pages 1074-1100.
    3. Yael V. Hochberg & Alexander Ljungqvist & Yang Lu, 2007. "Whom You Know Matters: Venture Capital Networks and Investment Performance," Journal of Finance, American Finance Association, vol. 62(1), pages 251-301, February.
    4. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    5. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    6. Martin, Christoph & Niemeyer, Peter, 2019. "Influence of measurement errors on networks: Estimating the robustness of centrality measures," Network Science, Cambridge University Press, vol. 7(2), pages 180-195, June.
    7. Gofman, Michael, 2017. "Efficiency and stability of a financial architecture with too-interconnected-to-fail institutions," Journal of Financial Economics, Elsevier, vol. 124(1), pages 113-146.
    8. Matthew Elliott & Benjamin Golub, 2019. "A Network Approach to Public Goods," Journal of Political Economy, University of Chicago Press, vol. 127(2), pages 730-776.
    9. Ernest Liu, 2019. "Industrial Policies in Production Networks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 1883-1948.
    10. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    11. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.
    12. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2017. "The Economic Consequences of Social-Network Structure," Journal of Economic Literature, American Economic Association, vol. 55(1), pages 49-95, March.
    13. Abhijit Banerjee & Arun G Chandrasekhar & Esther Duflo & Matthew O Jackson, 2019. "Using Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(6), pages 2453-2490.
    14. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    15. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    16. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    17. Griliches, Zvi, 1986. "Economic data issues," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 25, pages 1465-1514, Elsevier.
    18. Terrill L. Frantz & Marcelo Cataldo & Kathleen M. Carley, 2009. "Robustness of centrality measures under uncertainty: Examining the role of network topology," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 303-328, December.
    19. N. Binkiewicz & J. T. Vogelstein & K. Rohe, 2017. "Covariate-assisted spectral clustering," Biometrika, Biometrika Trust, vol. 104(2), pages 361-377.
    20. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    21. Garber, Steven & Klepper, Steven, 1980. "Extending the Classical Normal Errors-in-Variables Model," Econometrica, Econometric Society, vol. 48(6), pages 1541-1546, September.
    22. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    23. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    24. Emily Breza & Arun G. Chandrasekhar, 2019. "Social Networks, Reputation, and Commitment: Evidence From a Savings Monitors Experiment," Econometrica, Econometric Society, vol. 87(1), pages 175-216, January.
    25. Emily Breza & Arun G. Chandrasekhar & Tyler H. McCormick & Mengjie Pan, 2020. "Using Aggregated Relational Data to Feasibly Identify Network Structure without Network Data," American Economic Review, American Economic Association, vol. 110(8), pages 2454-2484, August.
    26. Robert E. Lipsey, 2009. "Measuring International Trade in Services," NBER Chapters, in: International Trade in Services and Intangibles in the Era of Globalization, pages 27-70, National Bureau of Economic Research, Inc.
    27. Ting Yan & Binyan Jiang & Stephen E. Fienberg & Chenlei Leng, 2019. "Statistical Inference in a Directed Network Model With Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 857-868, April.
    28. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    29. Alexandre Bovet & Hernán A. Makse, 2019. "Influence of fake news in Twitter during the 2016 US presidential election," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    30. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    31. M. E. J. Newman & Aaron Clauset, 2016. "Structure and inference in annotated networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    32. Robert J. Richmond, 2019. "Trade Network Centrality and Currency Risk Premia," Journal of Finance, American Finance Association, vol. 74(3), pages 1315-1361, June.
    33. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    34. Shabalin, Andrey A. & Nobel, Andrew B., 2013. "Reconstruction of a low-rank matrix in the presence of Gaussian noise," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 67-76.
    35. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Cai, 2022. "Linear Regression with Centrality Measures," Papers 2210.10024, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    2. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    3. Ida Johnsson & Hyungsik Roger Moon, 2017. "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," Papers 1709.10024, arXiv.org, revised Jul 2019.
    4. Chih‐Sheng Hsieh & Xu Lin, 2021. "Social interactions and social preferences in social networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 165-189, March.
    5. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    6. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    7. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    8. Rainone, Edoardo, 2020. "The network nature of over-the-counter interest rates," Journal of Financial Markets, Elsevier, vol. 47(C).
    9. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.
    10. Patacchini, Eleonora & Rainone, Edoardo & Zenou, Yves, 2017. "Heterogeneous peer effects in education," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 190-227.
    11. William C. Horrace & Hyunseok Jung & Shane Sanders, 2022. "Network Competition and Team Chemistry in the NBA," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
    12. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    13. Ajirloo, Bahman Fathi & Switzer, Lorne N., 2022. "Self-disclosed peer effects on corporate capital structure," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
    14. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    15. Boucher, Vincent & Fortin, Bernard, 2015. "Some Challenges in the Empirics of the Effects of Networks," IZA Discussion Papers 8896, Institute of Labor Economics (IZA).
    16. Patacchini, Eleonora & Arduini, Tiziano, 2016. "Residential choices of young Americans," Journal of Housing Economics, Elsevier, vol. 34(C), pages 69-81.
    17. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Adriana Lleras-Muney & Matthew Miller & Shuyang Sheng & Veronica T. Sovero, 2020. "Party On: The Labor Market Returns to Social Networks in Adolescence," NBER Working Papers 27337, National Bureau of Economic Research, Inc.
    19. Rokhaya Dieye & Bernard Fortin, 2017. "Gender Peer Effects Heterogeneity in Obesity," Cahiers de recherche 1702, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    20. Can M. Le & Tianxi Li, 2022. "Linear regression and its inference on noisy network‐linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1851-1885, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.12921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.