IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v507y2018icp294-303.html
   My bibliography  Save this article

Identifying influencers from sampled social networks

Author

Listed:
  • Tsugawa, Sho
  • Kimura, Kazuma

Abstract

Identifying influencers who can spread information to many other individuals from a social network is a fundamental research task in the network science research field. Several measures for identifying influencers have been proposed, and the effectiveness of these influence measures has been evaluated for the case where the complete social network structure is known. However, it is difficult in practice to obtain the complete structure of a social network because of missing data, false data, or node/link sampling from the social network. In this paper, we investigate the effects of node sampling from a social network on the effectiveness of influence measures at identifying influencers. Our experimental results show that the negative effect of biased sampling, such as sample edge count, on the identification of influencers is generally small. For social media networks, we can identify influencers whose influence is comparable with that of those identified from the complete social networks by sampling only 10%–30% of the networks. Moreover, our results also suggest the possible benefit of network sampling in the identification of influencers. Our results show that, for some networks, nodes with higher influence can be discovered from sampled social networks than from complete social networks.

Suggested Citation

  • Tsugawa, Sho & Kimura, Kazuma, 2018. "Identifying influencers from sampled social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 294-303.
  • Handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:294-303
    DOI: 10.1016/j.physa.2018.05.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118306290
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.
    2. Sho Tsugawa & Yukihiro Matsumoto & Hiroyuki Ohsaki, 2015. "On the robustness of centrality measures against link weight quantization in social networks," Computational and Mathematical Organization Theory, Springer, vol. 21(3), pages 318-339, September.
    3. Terrill L. Frantz & Marcelo Cataldo & Kathleen M. Carley, 2009. "Robustness of centrality measures under uncertainty: Examining the role of network topology," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 303-328, December.
    4. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    5. P.-J. Kim & H. Jeong, 2007. "Reliability of rank order in sampled networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(1), pages 109-114, January.
    6. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    7. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    8. Niu, Qikai & Zeng, An & Fan, Ying & Di, Zengru, 2015. "Robustness of centrality measures against network manipulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 124-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Md Ahsan Ul & Bakar, Azuraliza Abu & Yaakub, Mohd Ridzwan, 2024. "Measuring user influence in real-time on twitter using behavioural features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    3. Ma, Qian & Ma, Jun, 2017. "Identifying and ranking influential spreaders in complex networks with consideration of spreading probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 312-330.
    4. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    5. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    6. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    7. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    8. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    9. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    10. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    11. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.
    12. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    13. Zhong, Lin-Feng & Shang, Ming-Sheng & Chen, Xiao-Long & Cai, Shi-Ming, 2018. "Identifying the influential nodes via eigen-centrality from the differences and similarities of structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 77-82.
    14. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    15. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    16. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    17. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    18. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    19. Arun Advani & Bansi Malde, 2014. "Empirical methods for networks data: social effects, network formation and measurement error," IFS Working Papers W14/34, Institute for Fiscal Studies.
    20. Zhong, Lin-Feng & Liu, Quan-Hui & Wang, Wei & Cai, Shi-Min, 2018. "Comprehensive influence of local and global characteristics on identifying the influential nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 78-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:294-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.