IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v349y2005i3p535-547.html
   My bibliography  Save this article

Sandpiles on Watts–Strogatz type small-worlds

Author

Listed:
  • Lahtinen, Jani
  • Kertész, János
  • Kaski, Kimmo

Abstract

We study a one-dimensional sandpile model in small-world networks with long-range links either by introducing them randomly to fixed connection topology (quenched randomness) or to temporary connection topology (annealed randomness) between cells to allow a grain to topple from a cell to a neighbouring or distant cell. These models are investigated both analytically and by computer simulations, and they show self-organized criticality unlike the original one-dimensional sandpile model. The simulations also show that the distribution of avalanche size undergoes a transition from a non-critical to a critical regime. In addition we have found that for annealed and quenched randomness there is a scaling for the size-distribution of avalanches with a single power-law exponent, which is the same as that found for the standard sandpile model in higher dimensions. We also show that the average number of grains in the system follows power-law behaviour as a function of the probability of long-range links with different exponents for the annealed and quenched systems.

Suggested Citation

  • Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
  • Handle: RePEc:eee:phsmap:v:349:y:2005:i:3:p:535-547
    DOI: 10.1016/j.physa.2004.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104013603
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    2. de Arcangelis, L & Herrmann, H.J, 2002. "Self-organized criticality on small world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 545-549.
    3. Lee, D.-S. & Goh, K.-I. & Kahng, B. & Kim, D., 2004. "Sandpile avalanche dynamics on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 84-91.
    4. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2002. "Random spreading phenomena in annealed small world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 571-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Ya-Ting & Chen, Chien-chih & Chang, Young-Fo & Chiao, Ling-Yun, 2008. "Precursory phenomena associated with large avalanches in the long-range connective sandpile (LRCS) model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5263-5270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicky Zachariou & Paul Expert & Misako Takayasu & Kim Christensen, 2015. "Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-13, November.
    2. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    3. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    5. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    6. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    7. I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
    8. Paolo Zeppini & Koen Frenken, 2015. "Networks, Percolation, and Demand," Department of Economics Working Papers 38/15, University of Bath, Department of Economics.
    9. Gancio, Juan & Rubido, Nicolás, 2022. "Critical parameters of the synchronisation's stability for coupled maps in regular graphs," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    12. Terrill L. Frantz & Marcelo Cataldo & Kathleen M. Carley, 2009. "Robustness of centrality measures under uncertainty: Examining the role of network topology," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 303-328, December.
    13. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    14. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. De Kamps, Marc & Ladley, Daniel & Simaitis, Aistis, 2014. "Heterogeneous beliefs in over-the-counter markets," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 50-68.
    16. Juste Raimbault, 2019. "Multi-dimensional Urban Network Percolation," Post-Print halshs-02361292, HAL.
    17. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Li, Chunguang, 2009. "Memorizing morph patterns in small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 240-246.
    19. Grabowski, Franciszek, 2010. "Logistic equation of arbitrary order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3081-3093.
    20. Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:349:y:2005:i:3:p:535-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.