IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i9d10.1007_s10584-023-03596-z.html
   My bibliography  Save this article

Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes

Author

Listed:
  • Kevin Blagrave

    (York University)

  • Sapna Sharma

    (York University)

Abstract

Lakes are sensitive indicators of climate change as freshwater requires temperatures below 0 °C to freeze. Here, we used 34-year records for 74 lakes distributed across the Midwestern and Northeastern United States to ask the following: (i) Which physical factors affect lake ice phenology in the Northern United States?; (ii) Can an empirical statistical modelling approach be used to effectively predict ice phenology across the morphologically diverse lakes of the Northern United States?; and (iii) How much ice is forecasted to be lost in response to climate change? We find that our study lakes require 19 days with air temperatures below 0 °C to freeze, ranging from 4 days for small lakes to 53 days for larger lakes. To thaw, lakes require 22 days with air temperatures above 0 °C, ranging from 8 to 33 days. We find that 64% of the variation in ice-on dates is explained by air temperatures, and the remaining 36% of variation is explained by lake morphology, primarily mean depth. For ice-off dates, 80–90% of the variation is explained by air temperatures. By the end of the century in response to climate change, these lakes may lose 43 days of ice cover, although ranging from 12 days of less ice cover to no ice cover at all. Understanding the drivers of variability in ice phenology for lakes within regions found to be highly sensitive to climate change will promote our understanding of ice cover and ice loss, and also the widespread ecological ramifications associated with ice loss.

Suggested Citation

  • Kevin Blagrave & Sapna Sharma, 2023. "Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes," Climatic Change, Springer, vol. 176(9), pages 1-19, September.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:9:d:10.1007_s10584-023-03596-z
    DOI: 10.1007/s10584-023-03596-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03596-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03596-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbara Benson & John Magnuson & Olaf Jensen & Virginia Card & Glenn Hodgkins & Johanna Korhonen & David Livingstone & Kenton Stewart & Gesa Weyhenmeyer & Nick Granin, 2012. "Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005)," Climatic Change, Springer, vol. 112(2), pages 299-323, May.
    2. Sapna Sharma & John Magnuson & Gricelda Mendoza & Stephen Carpenter, 2013. "Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004," Climatic Change, Springer, vol. 118(3), pages 857-870, June.
    3. Mathis Loïc Messager & Bernhard Lehner & Günther Grill & Irena Nedeva & Oliver Schmitt, 2016. "Estimating the volume and age of water stored in global lakes using a geo-statistical approach," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    4. Sapna Sharma & Kevin Blagrave & John J. Magnuson & Catherine M. O’Reilly & Samantha Oliver & Ryan D. Batt & Madeline R. Magee & Dietmar Straile & Gesa A. Weyhenmeyer & Luke Winslow & R. Iestyn Woolway, 2019. "Widespread loss of lake ice around the Northern Hemisphere in a warming world," Nature Climate Change, Nature, vol. 9(3), pages 227-231, March.
    5. Juliane Bernhardt & Christof Engelhardt & Georgiy Kirillin & Jörg Matschullat, 2012. "Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts," Climatic Change, Springer, vol. 112(3), pages 791-817, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Anna-Maria Soja & Károly Kutics & Karl Maracek & Gábor Molnár & Gerhard Soja, 2014. "Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012 - influences of local weather and large scale oscillation patterns," Climatic Change, Springer, vol. 126(1), pages 119-133, September.
    3. Daniel F. Schmidt & Kevin M. Grise & Michael L. Pace, 2019. "High-frequency climate oscillations drive ice-off variability for Northern Hemisphere lakes and rivers," Climatic Change, Springer, vol. 152(3), pages 517-532, March.
    4. Sapna Sharma & John Magnuson, 2014. "Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004," Climatic Change, Springer, vol. 124(4), pages 835-847, June.
    5. Gesa A. Weyhenmeyer & Ulrike Obertegger & Hugo Rudebeck & Ellinor Jakobsson & Joachim Jansen & Galina Zdorovennova & Sheel Bansal & Benjamin D. Block & Cayelan C. Carey & Jonathan P. Doubek & Hilary D, 2022. "Towards critical white ice conditions in lakes under global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Gang Zhao & Yao Li & Liming Zhou & Huilin Gao, 2022. "Evaporative water loss of 1.42 million global lakes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Sapna Sharma & John Magnuson & Gricelda Mendoza & Stephen Carpenter, 2013. "Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004," Climatic Change, Springer, vol. 118(3), pages 857-870, June.
    10. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Tomas O. Höök & Carolyn J. Foley & Paris Collingsworth & Leslie Dorworth & Brant Fisher & Jason T. Hoverman & Elizabeth LaRue & Mark Pyron & Jennifer Tank, 2020. "An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1897-1916, December.
    13. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    17. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    18. Solarski Maksymilian, 2017. "The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland," Environmental & Socio-economic Studies, Sciendo, vol. 5(4), pages 74-81, December.
    19. Björn Nyberg & Gijs Henstra & Rob L. Gawthorpe & Rodmar Ravnås & Juha Ahokas, 2023. "Global scale analysis on the extent of river channel belts," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Babak Zolghadr-Asli & Maedeh Enayati & Hamid Reza Pourghasemi & Mojtaba Naghdyzadegan Jahromi & John P. Tiefenbacher, 2021. "A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10727-10742, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:9:d:10.1007_s10584-023-03596-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.