IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i3d10.1038_s41558-018-0393-5.html
   My bibliography  Save this article

Widespread loss of lake ice around the Northern Hemisphere in a warming world

Author

Listed:
  • Sapna Sharma

    (York University)

  • Kevin Blagrave

    (York University)

  • John J. Magnuson

    (University of Wisconsin-Madison)

  • Catherine M. O’Reilly

    (Illinois State University)

  • Samantha Oliver

    (United States Geological Survey)

  • Ryan D. Batt

    (Rutgers University)

  • Madeline R. Magee

    (University of Wisconsin-Madison
    Wisconsin Department of Natural Resources)

  • Dietmar Straile

    (University of Konstanz)

  • Gesa A. Weyhenmeyer

    (Uppsala University)

  • Luke Winslow

    (Rensselaer Polytechnic Institute)

  • R. Iestyn Woolway

    (University of Reading)

Abstract

Ice provides a range of ecosystem services—including fish harvest1, cultural traditions2, transportation3, recreation4 and regulation of the hydrological cycle5—to more than half of the world’s 117 million lakes. One of the earliest observed impacts of climatic warming has been the loss of freshwater ice6, with corresponding climatic and ecological consequences7. However, while trends in ice cover phenology have been widely documented2,6,8,9, a comprehensive large-scale assessment of lake ice loss is absent. Here, using observations from 513 lakes around the Northern Hemisphere, we identify lakes vulnerable to ice-free winters. Our analyses reveal the importance of air temperature, lake depth, elevation and shoreline complexity in governing ice cover. We estimate that 14,800 lakes currently experience intermittent winter ice cover, increasing to 35,300 and 230,400 at 2 and 8 °C, respectively, and impacting up to 394 and 656 million people. Our study illustrates that an extensive loss of lake ice will occur within the next generation, stressing the importance of climate mitigation strategies to preserve ecosystem structure and function, as well as local winter cultural heritage.

Suggested Citation

  • Sapna Sharma & Kevin Blagrave & John J. Magnuson & Catherine M. O’Reilly & Samantha Oliver & Ryan D. Batt & Madeline R. Magee & Dietmar Straile & Gesa A. Weyhenmeyer & Luke Winslow & R. Iestyn Woolway, 2019. "Widespread loss of lake ice around the Northern Hemisphere in a warming world," Nature Climate Change, Nature, vol. 9(3), pages 227-231, March.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:3:d:10.1038_s41558-018-0393-5
    DOI: 10.1038/s41558-018-0393-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0393-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0393-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin C. Rose & Britta Bierwagen & Scott D. Bridgham & Daren M. Carlisle & Charles P. Hawkins & N. LeRoy Poff & Jordan S. Read & Jason R. Rohr & Jasmine E. Saros & Craig E. Williamson, 2023. "Indicators of the effects of climate change on freshwater ecosystems," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    2. Gang Zhao & Yao Li & Liming Zhou & Huilin Gao, 2022. "Evaporative water loss of 1.42 million global lakes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Kevin Blagrave & Sapna Sharma, 2023. "Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes," Climatic Change, Springer, vol. 176(9), pages 1-19, September.
    4. R. Iestyn Woolway & Gesa A. Weyhenmeyer & Martin Schmid & Martin T. Dokulil & Elvira Eyto & Stephen C. Maberly & Linda May & Christopher J. Merchant, 2019. "Substantial increase in minimum lake surface temperatures under climate change," Climatic Change, Springer, vol. 155(1), pages 81-94, July.
    5. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Gesa A. Weyhenmeyer & Ulrike Obertegger & Hugo Rudebeck & Ellinor Jakobsson & Joachim Jansen & Galina Zdorovennova & Sheel Bansal & Benjamin D. Block & Cayelan C. Carey & Jonathan P. Doubek & Hilary D, 2022. "Towards critical white ice conditions in lakes under global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yu Cai & Chang-Qing Ke & Guohui Yao & Xiaoyi Shen, 2020. "MODIS-observed variations of lake ice phenology in Xinjiang, China," Climatic Change, Springer, vol. 158(3), pages 575-592, February.
    8. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Tomas O. Höök & Carolyn J. Foley & Paris Collingsworth & Leslie Dorworth & Brant Fisher & Jason T. Hoverman & Elizabeth LaRue & Mark Pyron & Jennifer Tank, 2020. "An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1897-1916, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:3:d:10.1038_s41558-018-0393-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.