IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i1p119-133.html
   My bibliography  Save this article

Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012 - influences of local weather and large scale oscillation patterns

Author

Listed:
  • Anna-Maria Soja
  • Károly Kutics
  • Karl Maracek
  • Gábor Molnár
  • Gerhard Soja

Abstract

Ice cover of the two Central European steppe lakes, Lake Balaton (Hungary) and Lake Neusiedl (Austria/Hungary), is characterized by high interannual variability (mean ice duration ± s.d.: 44 ± 26 days and 73 ± 28 days, respectively). For both lakes, a trend towards shorter ice duration and earlier ice-off can be observed in the 86 and 81 year data records, respectively. For Lake Neusiedl, significant trends for ice-on (+2.3 days decade −1 ), ice-off ( −1.8 days decade −1 ) and ice duration ( −3.1 day decade −1 ) are detected. At Lake Balaton, however, trends for ice-on (0 day decade −1 ), ice-off ( −0.7 days decade −1 ) and ice duration ( −1.2 days decade −1 ) are not significant. The temporal trends have accelerated for Lake Neusiedl in the past 60 years (ice duration −5.6 days decade −1 ). The variability of the ice parameters has increased during the 80 year observation period for Lake Neusiedl, but not for Lake Balaton. The number of melt-refreeze cycles at Lake Balaton increased at first, but then decreased during the last 20 years at both lakes. Warming trends in mean surface water temperatures for all seasons are more distinct than temporal trends of mean air temperatures. Increases of winter air temperature by 1 °C are related to an ice-on delay, a decrease in ice duration (Lake Balaton: −12 days °C −1 , R 2 = 0.72; Lake Neusiedl: −11 day °C −1 , R 2 = 0.54) and an earlier ice-off. Snow cover, wind speed, and solar radiation are also related to ice dates. Mediterranean Oscillation and the North Atlantic Oscillation show significant relationships with ice phenology at both lakes whereas the East Atlantic teleconnection pattern only is related to ice characteristics of Lake Neusiedl. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Anna-Maria Soja & Károly Kutics & Karl Maracek & Gábor Molnár & Gerhard Soja, 2014. "Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012 - influences of local weather and large scale oscillation patterns," Climatic Change, Springer, vol. 126(1), pages 119-133, September.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:1:p:119-133
    DOI: 10.1007/s10584-014-1199-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1199-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1199-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbara Benson & John Magnuson & Olaf Jensen & Virginia Card & Glenn Hodgkins & Johanna Korhonen & David Livingstone & Kenton Stewart & Gesa Weyhenmeyer & Nick Granin, 2012. "Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005)," Climatic Change, Springer, vol. 112(2), pages 299-323, May.
    2. Glenn Hodgkins, 2013. "The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England," Climatic Change, Springer, vol. 119(3), pages 705-718, August.
    3. Sapna Sharma & John Magnuson & Gricelda Mendoza & Stephen Carpenter, 2013. "Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004," Climatic Change, Springer, vol. 118(3), pages 857-870, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel F. Schmidt & Kevin M. Grise & Michael L. Pace, 2019. "High-frequency climate oscillations drive ice-off variability for Northern Hemisphere lakes and rivers," Climatic Change, Springer, vol. 152(3), pages 517-532, March.
    2. Sapna Sharma & John Magnuson, 2014. "Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004," Climatic Change, Springer, vol. 124(4), pages 835-847, June.
    3. Kevin Blagrave & Sapna Sharma, 2023. "Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes," Climatic Change, Springer, vol. 176(9), pages 1-19, September.
    4. Gesa A. Weyhenmeyer & Ulrike Obertegger & Hugo Rudebeck & Ellinor Jakobsson & Joachim Jansen & Galina Zdorovennova & Sheel Bansal & Benjamin D. Block & Cayelan C. Carey & Jonathan P. Doubek & Hilary D, 2022. "Towards critical white ice conditions in lakes under global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Glenn Hodgkins, 2013. "The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England," Climatic Change, Springer, vol. 119(3), pages 705-718, August.
    6. Solomon Gebre & Netra Timalsina & Knut Alfredsen, 2014. "Some Aspects of Ice-Hydropower Interaction in a Changing Climate," Energies, MDPI, vol. 7(3), pages 1-15, March.
    7. G. H. Niedrist & R. Psenner & R. Sommaruga, 2018. "Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake," Climatic Change, Springer, vol. 151(3), pages 473-490, December.
    8. Lin Li & Meiping Sun & Jing Mei, 2022. "Variation and Influencing Factors of Cloud Characteristics over Qinghai Lake from 2006 to 2019," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    9. Sapna Sharma & John Magnuson & Gricelda Mendoza & Stephen Carpenter, 2013. "Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004," Climatic Change, Springer, vol. 118(3), pages 857-870, June.
    10. Juho Jakkila & Miina Auttila & Tapio Tuukkanen & Noora Veijalainen, 2024. "Modelling climate change impacts on lake ice and snow demonstrates breeding habitat decline of the endangered Saimaa ringed seal," Climatic Change, Springer, vol. 177(9), pages 1-20, September.
    11. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    12. Solarski Maksymilian, 2017. "The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland," Environmental & Socio-economic Studies, Sciendo, vol. 5(4), pages 74-81, December.
    13. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Andrew W. Ellis & Timothy R. Greene, 2019. "Synoptic climate evidence of a late-twentieth century change to earlier spring ice-out on Maine Lakes, USA," Climatic Change, Springer, vol. 153(3), pages 323-339, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:1:p:119-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.