IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i9d10.1007_s10584-023-03557-6.html
   My bibliography  Save this article

Detection, attribution, and specifying mechanisms of hydrological changes in geographically different river basins

Author

Listed:
  • Alexander Gelfan

    (Water Problems Institute of Russian Academy of Sciences
    Lomonosov Moscow State University)

  • Andrey Kalugin

    (Water Problems Institute of Russian Academy of Sciences)

  • Inna Krylenko

    (Water Problems Institute of Russian Academy of Sciences
    Lomonosov Moscow State University)

Abstract

Our study is aimed at detection of directional trends in streamflow data observed in large rivers located in different climatic zones and attribution of the detected changes to climate drivers. We consider detection and attribution as interrelated study stages within a suggested hypothesis testing framework with the use of a hydrological model. First, we test the significance of the trends in the observed streamflow data series of 74 to 82 years long and evaluate the model’s ability to reproduce the trends, so that the trends in the simulated data are statistically indistinguishable from the corresponding observed trends. Herewith, the model is forced by the reanalysis climate data. Then, for the basins where the model reproduces the trends, we move to the attribution stage of the study. At this stage, the hydrological model is forced by the counterfactual (detrended) climate data. If the trend is not detected in the counterfactual-climate-forced simulations, we conclude that the detected observed changes are likely to be attributed to the climate trend. The suggested testing procedure is applied for four river basins: Lena, Selenga, Vyatka, and Pechora. The corresponding hydrological models are developed on the basis of the ECOMAG modeling platform. We conclude that the detected trends in the observed annual flow data series for the Lena, Selenga, and Vyatka rivers, as well as the trends in high flow for the Lena and Selenga rivers, can be attributed to climate drivers with a high confidence. Regional differences in basin mechanisms governing the detected changes are analyzed.

Suggested Citation

  • Alexander Gelfan & Andrey Kalugin & Inna Krylenko, 2023. "Detection, attribution, and specifying mechanisms of hydrological changes in geographically different river basins," Climatic Change, Springer, vol. 176(9), pages 1-21, September.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:9:d:10.1007_s10584-023-03557-6
    DOI: 10.1007/s10584-023-03557-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03557-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03557-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iman Mallakpour & Gabriele Villarini, 2015. "The changing nature of flooding across the central United States," Nature Climate Change, Nature, vol. 5(3), pages 250-254, March.
    2. Alexander Gelfan & David Gustafsson & Yury Motovilov & Berit Arheimer & Andrey Kalugin & Inna Krylenko & Alexander Lavrenov, 2017. "Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues," Climatic Change, Springer, vol. 141(3), pages 499-515, April.
    3. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iulii Didovets & Valentina Krysanova & Aliya Nurbatsina & Bijan Fallah & Viktoriya Krylova & Assel Saparova & Jafar Niyazov & Olga Kalashnikova & Fred Fokko Hattermann, 2024. "Attribution of current trends in streamflow to climate change for 12 Central Asian catchments," Climatic Change, Springer, vol. 177(1), pages 1-20, January.
    2. Fred F. Hattermann & Valentina Krysanova, 2024. "Impact attribution: exploring the contribution of climate change to recent trends in hydrological processes—an editorial introduction," Climatic Change, Springer, vol. 177(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    2. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    3. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    4. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    5. Timothy Ivancic & Stephen Shaw, 2015. "Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge," Climatic Change, Springer, vol. 133(4), pages 681-693, December.
    6. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    7. Uilson Ricardo Venâncio Aires & Demetrius David Silva & Michel Castro Moreira & Carlos Antônio Alvares Soares Ribeiro & Celso Bandeira de Melo Ribeiro, 2020. "The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1933-1949, April.
    8. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    9. Dario Camuffo & Antonio della Valle & Francesca Becherini & Valeria Zanini, 2020. "Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data," Climatic Change, Springer, vol. 162(2), pages 923-942, September.
    10. Ijaz Ahmad & Li Wang & Faisal Ali & Fan Zhang, 2022. "Spatiotemporal Patterns of Extreme Precipitation Events over Jhelum River Basin," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    11. Clyde E. Goulden & Jerry Mead & Richard Horwitz & Munhtuya Goulden & Banzragch Nandintsetseg & Sabrina McCormick & Bazartseren Boldgiv & Peter S. Petraitis, 2016. "Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia," Climatic Change, Springer, vol. 136(2), pages 281-295, May.
    12. Tweneboah Senzu, Emmanuel, 2020. "Modern currency exchange rate behaviour and proposed trend-like forecasting model," MPRA Paper 99933, University Library of Munich, Germany.
    13. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    14. Vishnu Prasad Pandey & Dibesh Shrestha & Mina Adhikari & Shristi Shakya, 2020. "Streamflow Alterations, Attributions, and Implications in Extended East Rapti Watershed, Central-Southern Nepal," Sustainability, MDPI, vol. 12(9), pages 1-30, May.
    15. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    16. Elton Luis Silva Abel & Rafael Coll Delgado & Regiane Souza Vilanova & Paulo Eduardo Teodoro & Carlos Antonio Silva Junior & Marcel Carvalho Abreu & Guilherme Fernando Capristo Silva, 2021. "Environmental dynamics of the Juruá watershed in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6769-6785, May.
    17. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    18. Zhiqiang Pang & Zhaoxu Wang, 2021. "Temperature trend analysis and extreme high temperature prediction based on weighted Markov Model in Lanzhou," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 891-906, August.
    19. K. F. Fung & Y. F. Huang & C. H. Koo, 2020. "Assessing drought conditions through temporal pattern, spatial characteristic and operational accuracy indicated by SPI and SPEI: case analysis for Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2071-2101, September.
    20. Diana Šarauskienė & Darius Jakimavičius & Aldona Jurgelėnaitė & Jūratė Kriaučiūnienė, 2024. "Warming Climate-Induced Changes in Lithuanian River Ice Phenology," Sustainability, MDPI, vol. 16(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:9:d:10.1007_s10584-023-03557-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.