IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2012-d1348531.html
   My bibliography  Save this article

Projection of Non-Industrial Electricity Consumption in China’s Pearl River Delta under Global Warming Scenarios

Author

Listed:
  • Tiaoye Li

    (School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Lingjiang Tao

    (School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Mi Zhang

    (School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China)

Abstract

Global warming is a global issue closely linked to sustainability, and power systems around the world are facing immense pressure due to global warming. The purpose of this study is to investigate the impact of global warming on non-industrial electricity consumption in China’s Pearl River Delta. The Weather Research and Forecasting (WRF) model is employed to dynamically downscale and simulate summer climate change characteristics during historical periods and future warming scenarios of 1.5/2 °C. Then, in order to dynamically investigate the changes in non-industrial electricity consumption in cities after warming, we developed a non-industrial electricity consumption estimation model based on degree days and GDP. The regression model can well reproduce non-industrial electricity consumption in summer. Under future warming scenarios of 1.5/2 °C, the results indicate an annual growth trend in non-industrial electricity consumption due to global warming. Under a 1.5 °C warming scenario, non-industrial electricity consumption in both Guangzhou and Zhuhai increases, with Guangzhou experiencing a larger increase of about 10 terawatt-hours (TWh) compared to the historical period. However, under a 2 °C warming scenario, non-industrial electricity consumption in both cities slightly decreases compared to the 1.5 °C warming scenario, with a maximum decrease of 874 million kilowatt-hours.

Suggested Citation

  • Tiaoye Li & Lingjiang Tao & Mi Zhang, 2024. "Projection of Non-Industrial Electricity Consumption in China’s Pearl River Delta under Global Warming Scenarios," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2012-:d:1348531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carraro, Carlo & Massetti, Emanuele, 2012. "Energy and climate change in China," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 689-713, December.
    2. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    3. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    4. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    5. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    6. Anin Aroonruengsawat & Maximilian Auffhammer, 2011. "Impacts of Climate Change on Residential Electricity Consumption: Evidence from Billing Data," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 311-342, National Bureau of Economic Research, Inc.
    7. Rong-Hua Zhang & Lewis M. Rothstein & Antonio J. Busalacchi, 1998. "Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean," Nature, Nature, vol. 391(6670), pages 879-883, February.
    8. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    9. Maximilian Auffhammer & Anin Aroonruengsawat, 2012. "Erratum to: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 113(3), pages 1101-1104, August.
    10. repec:dau:papers:123456789/8180 is not listed on IDEAS
    11. Ivanova, K & Ausloos, M, 1999. "Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 349-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    2. Adhitya Wardhono & Panji Tirta Nirwana Putra & M. Abd. Nasir, 2016. "Causal study of macroeconomic indicators on carbon dioxide emission in ASEAN 5," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(2), pages 15-31.
    3. Davinson Stev Abril‐Salcedo & Luis Fernando Melo‐Velandia & Daniel Parra‐Amado, 2020. "Nonlinear relationship between the weather phenomenon El niño and Colombian food prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1059-1086, October.
    4. David Anthoff & Richard Tol, 2013. "The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 117(3), pages 515-530, April.
    5. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    6. Tong Wu & Zhe You & Mengqi Gong & Jinhua Cheng, 2021. "Star Wars? Space Weather and Electricity Market: Evidence from China," Energies, MDPI, vol. 14(17), pages 1-14, August.
    7. Ramin Khochiani & Younes Nademi, 2020. "Energy consumption, CO2 emissions, and economic growth in the United States, China, and India: A wavelet coherence approach," Energy & Environment, , vol. 31(5), pages 886-902, August.
    8. Kahia, Montassar & Moulahi, Tarek & Mahfoudhi, Sami & Boubaker, Sabri & Omri, Anis, 2022. "A machine learning process for examining the linkage among disaggregated energy consumption, economic growth, and environmental degradation," Resources Policy, Elsevier, vol. 79(C).
    9. Petrick, Sebastian & Rehdanz, Katrin & Tol, Richard S. J., 2010. "The impact of temperature changes on residential energy consumption," Kiel Working Papers 1618, Kiel Institute for the World Economy (IfW Kiel).
    10. Kang, Jieyi & Reiner, David M., 2022. "What is the effect of weather on household electricity consumption? Empirical evidence from Ireland," Energy Economics, Elsevier, vol. 111(C).
    11. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex Business School.
    12. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Rafik JBIR, 2021. "Temperature, energy consumption, and Co2 emission: testing for nonlinearity on USA Economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12434-12445, August.
    15. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    16. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Maddison, David & Rehdanz, Katrin, 2011. "The impact of climate on life satisfaction," Ecological Economics, Elsevier, vol. 70(12), pages 2437-2445.
    18. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    19. Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
    20. Thomas Buchholz & John Gunn & Bruce Springsteen & Gregg Marland & Max Moritz & David Saah, 2022. "Probability-based accounting for carbon in forests to consider wildfire and other stochastic events: synchronizing science, policy, and carbon offsets," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2012-:d:1348531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.