IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v171y2022i3d10.1007_s10584-022-03343-w.html
   My bibliography  Save this article

Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan

Author

Listed:
  • Michel Wortmann

    (Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg A31
    University of Oxford)

  • Doris Duethmann

    (German Research Center for Geosciences
    Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB))

  • Christoph Menz

    (Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg A31)

  • Tobias Bolch

    (University of St Andrews)

  • Shaochun Huang

    (Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg A31
    Norwegian Water Resources and Energy Directorate (NVE))

  • Jiang Tong

    (Chinese Meteorological Administration)

  • Zbigniew W. Kundzewicz

    (Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg A31
    Poznan University of Life Sciences)

  • Valentina Krysanova

    (Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg A31)

Abstract

Glacierised river catchments are highly sensitive to climate change, while large populations may depend on their water resources. The irrigation agriculture and the communities along the Tarim River, NW China, strongly depend on the discharge from the glacierised catchments surrounding the Taklamakan Desert. While recent increasing discharge has been beneficial for the agricultural sector, future runoff under climate change is uncertain. We assess three climate change scenarios by forcing two glacio-hydrological models with output of eight general circulation models. The models have different glaciological modelling approaches but were both calibrated to discharge and glacier mass balance observations. Projected changes in climate, glacier cover and river discharge are examined over the twenty-first century and generally point to warmer and wetter conditions. The model ensemble projects median temperature and precipitation increases of + 1.9–5.3 °C and + 9–24%, respectively, until the end of the century compared to the 1971–2000 reference period. Glacier area is projected to shrink by 15–73% (model medians, range over scenarios), depending on the catchment. River discharge is projected to first increase by about 20% in the Aksu River catchments with subsequent decreases of up to 20%. In contrast, discharge in the drier Hotan and Yarkant catchments is projected to increase by 15–60% towards the end of the century. The large uncertainties mainly relate to the climate model ensemble and the limited observations to constrain the glacio-hydrological models. Sustainable water resource management will be key to avert the risks associated with the projected changes and their uncertainties.

Suggested Citation

  • Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
  • Handle: RePEc:spr:climat:v:171:y:2022:i:3:d:10.1007_s10584-022-03343-w
    DOI: 10.1007/s10584-022-03343-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03343-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03343-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atanu Bhattacharya & Tobias Bolch & Kriti Mukherjee & Owen King & Brian Menounos & Vassiliy Kapitsa & Niklas Neckel & Wei Yang & Tandong Yao, 2021. "High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Tobias Bolch, 2017. "Asian glaciers are a reliable water source," Nature, Nature, vol. 545(7653), pages 161-162, May.
    3. Niels Thevs, 2011. "Water Scarcity and Allocation in the Tarim Basin: Decision Structures and Adaptations on the Local Level," Journal of Current Chinese Affairs - China aktuell, Institute of Asian Studies, GIGA German Institute of Global and Area Studies, Hamburg, vol. 40(3), pages 113-137.
    4. Qiuhong Tang & Heping Hu & Taikan Oki & Fuqiang Tian, 2007. "Water Balance within Intensively Cultivated Alluvial Plain in an Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1703-1715, October.
    5. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    6. P. D. A. Kraaijenbrink & M. F. P. Bierkens & A. F. Lutz & W. W. Immerzeel, 2017. "Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers," Nature, Nature, vol. 549(7671), pages 257-260, September.
    7. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    8. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    9. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    10. Shaochun Huang & Fred Hattermann & Valentina Krysanova & Axel Bronstert, 2013. "Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model," Climatic Change, Springer, vol. 116(3), pages 631-663, February.
    11. Huang, Shaochun & Wortmann, Michel & Duethmann, Doris & Menz, Christoph & Shi, Fengzhi & Zhao, Chengyi & Su, Buda & Krysanova, Valentina, 2018. "Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China," Agricultural Water Management, Elsevier, vol. 203(C), pages 207-224.
    12. Xingming Hao & Yaning Chen & Changchun Xu & Weihong Li, 2008. "Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1159-1171, September.
    13. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Yimeng & Wu, Jiaxin & Yimiti, Tudi & Li, Zhouyuan & Yang, Xiuchun & Dong, Shikui, 2024. "The landscape altered the interaction between vegetation and climate in the desert oasis of Hotan River Basin, Xinjiang, China," Ecological Modelling, Elsevier, vol. 491(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Bo Su & Cunde Xiao & Deliang Chen & Dahe Qin & Yongjian Ding, 2019. "Cryosphere Services and Human Well-Being," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    3. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    4. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Qi Liu & Yi Liu & Jie Niu & Dongwei Gui & Bill X. Hu, 2022. "Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    6. Jiahui Li & Xinliang Xu, 2023. "Glacier Change and Its Response to Climate Change in Western China," Land, MDPI, vol. 12(3), pages 1-13, March.
    7. Jeffrey O’Hara & Konstantine Georgakakos, 2008. "Quantifying the Urban Water Supply Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1477-1497, October.
    8. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    9. Hu, Qiuli & Yang, Yonghui & Han, Shumin & Wang, Jiusheng, 2019. "Degradation of agricultural drainage water quantity and quality due to farmland expansion and water-saving operations in arid basins," Agricultural Water Management, Elsevier, vol. 213(C), pages 185-192.
    10. Wolfgang Jens-Henrik Meier & Perdita Pohle & Jussi Grießinger, 2022. "Climate Change and New Markets: Multi-Factorial Drivers of Recent Land-Use Change in The Semi-Arid Trans-Himalaya, Nepal," Land, MDPI, vol. 11(9), pages 1-26, September.
    11. Hongbo Ling & Hailiang Xu & Jinyi Fu, 2013. "Temporal and Spatial Variation in Regional Climate and its Impact on Runoff in Xinjiang, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 381-399, January.
    12. Kara J. Pitman & Jonathan W. Moore & Matthias Huss & Matthew R. Sloat & Diane C. Whited & Tim J. Beechie & Rich Brenner & Eran W. Hood & Alexander M. Milner & George R. Pess & Gordan H. Reeves & Danie, 2021. "Glacier retreat creating new Pacific salmon habitat in western North America," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Ekaterina P. Rets & Ivan N. Durmanov & Maria B. Kireeva & Andrew M. Smirnov & Viktor V. Popovnin, 2020. "Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges," Climatic Change, Springer, vol. 163(4), pages 2135-2151, December.
    14. Muhammad Shafeeque & Yi Luo & Arfan Arshad & Sher Muhammad & Muhammad Ashraf & Quoc Bao Pham, 2023. "Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2721-2748, February.
    15. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    16. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    17. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    18. Leting Lyu & Xiaorui Wang & Caizhi Sun & Tiantian Ren & Defeng Zheng, 2019. "Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    19. Hengzhou Xu & Chuanrong Zhang & Weidong Li & Wenjing Zhang & Hongchun Yin, 2018. "Economic growth and carbon emission in China:a spatial econometric Kuznets curve?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(1), pages 11-28.
    20. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:171:y:2022:i:3:d:10.1007_s10584-022-03343-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.