IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26897-2.html
   My bibliography  Save this article

Glacier retreat creating new Pacific salmon habitat in western North America

Author

Listed:
  • Kara J. Pitman

    (Simon Fraser University)

  • Jonathan W. Moore

    (Simon Fraser University)

  • Matthias Huss

    (Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich
    University of Fribourg
    Swiss Federal Institute for Forest, Snow and Landscape Research (WSL))

  • Matthew R. Sloat

    (Wild Salmon Center)

  • Diane C. Whited

    (University of Montana)

  • Tim J. Beechie

    (Watershed Program, Fish Ecology Division, Northwest Fisheries Science Center, NOAA Fisheries)

  • Rich Brenner

    (Division of Commercial Fisheries)

  • Eran W. Hood

    (University of Alaska Southeast)

  • Alexander M. Milner

    (University of Birmingham, Edgbaston
    University of Alaska)

  • George R. Pess

    (National Marine Fisheries Service, NOAA Fisheries)

  • Gordan H. Reeves

    (USDA Forest Service, Pacific Northwest Research Station)

  • Daniel E. Schindler

    (University of Washington)

Abstract

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.

Suggested Citation

  • Kara J. Pitman & Jonathan W. Moore & Matthias Huss & Matthew R. Sloat & Diane C. Whited & Tim J. Beechie & Rich Brenner & Eran W. Hood & Alexander M. Milner & George R. Pess & Gordan H. Reeves & Danie, 2021. "Glacier retreat creating new Pacific salmon habitat in western North America," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26897-2
    DOI: 10.1038/s41467-021-26897-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26897-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26897-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    2. Standal, Dag, 2003. "Fishing the last frontier--controversies in the regulations of shrimp trawling in the high Arctic," Marine Policy, Elsevier, vol. 27(5), pages 375-388, September.
    3. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    4. Todd Sanford & Peter C. Frumhoff & Amy Luers & Jay Gulledge, 2014. "The climate policy narrative for a dangerously warming world," Nature Climate Change, Nature, vol. 4(3), pages 164-166, March.
    5. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    6. Harsem, Øistein & Eide, Arne & Heen, Knut, 2011. "Factors influencing future oil and gas prospects in the Arctic," Energy Policy, Elsevier, vol. 39(12), pages 8037-8045.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    2. Kirsten Halsnæs & Per Skougaard Kaspersen, 2018. "Decomposing the cascade of uncertainty in risk assessments for urban flooding reflecting critical decision-making issues," Climatic Change, Springer, vol. 151(3), pages 491-506, December.
    3. Jurandir Zullo & Vânia Rosa Pereira & Andrea Koga-Vicente, 2018. "Sugar-energy sector vulnerability under CMIP5 projections in the Brazilian central-southern macro-region," Climatic Change, Springer, vol. 149(3), pages 489-502, August.
    4. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    5. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    6. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    7. Wang, Junbo & Ma, Zhenyu & Fan, Xiayang, 2023. "We are all in the same boat: The welfare and carbon abatement effects of the EU carbon border adjustment mechanism," MPRA Paper 118978, University Library of Munich, Germany.
    8. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    9. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    10. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    11. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    12. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    13. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    14. Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
    15. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    16. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    17. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    18. Kushlin, Valery Ivanovich (Кушлин, Валерий Иванович) & Ustenko, V.S. (Устенко, В.С.), 2016. "Analysis of International Experience of Intensification of Scientific and Innovative Activity in the Modern Unstable Conditions [Анализ Международного Опыта Активизации Научно-Инновационной Деятель," Working Papers 2832, Russian Presidential Academy of National Economy and Public Administration.
    19. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    20. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26897-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.