IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics037837742200186x.html
   My bibliography  Save this article

Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia

Author

Listed:
  • Wu, Hao
  • Xu, Min
  • Peng, Zhuoyue
  • Chen, Xiaoping

Abstract

Snow and glaciers provide water to the densely populated downstream area of the Tarim River Basin, which is an important irrigated agricultural area in China. Cotton is an important cash crop, and meltwater is an important irrigation water source for cotton in this region. In this study, the spatiotemporal dependence of cotton yield on mountain meltwater resources in the subbasins of the Tarim River basin was quantified by the variable infiltration capacity (VIC) hydrologic model with the degree-day and CROPR models during 1960–2017. The results showed that the changes in meltwater in all subbasins had a significantly increasing trend. Meltwater contributions to cotton irrigation and yield varied spatiotemporally. Along the area south of the Tian Shan Mountains, the meltwater contribution to irrigation showed a decreasing trend from west to east, and the highest contribution of meltwater to cotton yield occurred in the Weigan River basin, followed by the Aksu River basin and Kaidu River basin. Along the northern Karakoram Mountains, the meltwater contributions to cotton irrigation and yield first decreased and then increased from west to east. In the whole basin, 48.6% of total irrigation withdrawals originated from mountain snow and glacial meltwater and contributed an additional 55.9% to total cotton production during the study period. The results provide important agricultural information for locations where shifts in water availability and demand are projected as a result of socioeconomic growth.

Suggested Citation

  • Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200186x
    DOI: 10.1016/j.agwat.2022.107639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200186X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    2. Yu, Yang & Yu, Ruide & Chen, Xi & Yu, Guoan & Gan, Miao & Disse, Markus, 2017. "Agricultural water allocation strategies along the oasis of Tarim River in Northwest China," Agricultural Water Management, Elsevier, vol. 187(C), pages 24-36.
    3. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    4. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    6. A. F. Lutz & W. W. Immerzeel & A. B. Shrestha & M. F. P. Bierkens, 2014. "Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation," Nature Climate Change, Nature, vol. 4(7), pages 587-592, July.
    7. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    9. H. Biemans & C. Siderius & A. F. Lutz & S. Nepal & B. Ahmad & T. Hassan & W. Bloh & R. R. Wijngaard & P. Wester & A. B. Shrestha & W. W. Immerzeel, 2019. "Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain," Nature Sustainability, Nature, vol. 2(7), pages 594-601, July.
    10. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You, Yang & Wang, Yakun & Fan, Xiaodong & Dai, Qin & Yang, Guang & Wang, Wene & Chen, Dianyu & Hu, Xiaotao, 2024. "Progress in joint application of crop models and hydrological models," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    4. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    7. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    8. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    9. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    11. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    12. Li, Haoran & Wang, Hongguang & Fang, Qin & Jia, Bin & Li, Dongxiao & He, Jianning & Li, Ruiqi, 2023. "Effects of irrigation and nitrogen application on NO3--N distribution in soil, nitrogen absorption, utilization and translocation by winter wheat," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Bo Su & Cunde Xiao & Deliang Chen & Dahe Qin & Yongjian Ding, 2019. "Cryosphere Services and Human Well-Being," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    14. Keyvan Malek & Patrick Reed & Jennifer Adam & Tina Karimi & Michael Brady, 2020. "Water rights shape crop yield and revenue volatility tradeoffs for adaptation in snow dependent systems," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    15. Muhammad Shafeeque & Yi Luo & Arfan Arshad & Sher Muhammad & Muhammad Ashraf & Quoc Bao Pham, 2023. "Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2721-2748, February.
    16. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    17. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    18. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    19. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    20. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200186x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.