IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v148y2018i3d10.1007_s10584-017-2040-y.html
   My bibliography  Save this article

County-level climate change information to support decision-making on working lands

Author

Listed:
  • Emile Elias

    (Jornada Experimental Range)

  • T. Scott Schrader

    (Jornada Experimental Range)

  • John T. Abatzoglou

    (University of Idaho)

  • Darren James

    (Jornada Experimental Range)

  • Mike Crimmins

    (University of Arizona)

  • Jeremy Weiss

    (University of Arizona)

  • Albert Rango

    (Jornada Experimental Range)

Abstract

Farmers, ranchers, and forest landowners across the USA make weather- and climate-related management decisions at varying temporal and spatial scales, often with input from local experts like crop consultants and cooperative extension (CE) personnel. In order to provide additional guidance to such longer-term planning efforts, we developed a tool that shows statistically downscaled climate projections of temperature and precipitation consolidated to the county level for the contiguous US. Using the county as a fundamental mapping unit encourages the use of this information within existing institutional structures like CE and other U.S. Department of Agriculture (USDA) programs. A “quick-look” metric based on the spatial variability of climate within each county aids in the interpretation of county-level information. For instance, relatively higher spatial variability within a county indicates that more localized information should be used to support stakeholder planning. Changes in annual precipitation show a latitudinal dipole where increases are projected for much of the northern US while declines are projected for counties across the southern US. Seasonal shifts in county-level precipitation are projected nationwide with declines most evident in summer months in most regions. Changes in the spatial variability of annual precipitation for most counties were less than 10 mm, indicating fairly spatially homogenous midcentury precipitation changes at the county level. Annual and seasonal midcentury temperatures are projected to increase across the USA, with relatively low change in the spatial variability (

Suggested Citation

  • Emile Elias & T. Scott Schrader & John T. Abatzoglou & Darren James & Mike Crimmins & Jeremy Weiss & Albert Rango, 2018. "County-level climate change information to support decision-making on working lands," Climatic Change, Springer, vol. 148(3), pages 355-369, June.
  • Handle: RePEc:spr:climat:v:148:y:2018:i:3:d:10.1007_s10584-017-2040-y
    DOI: 10.1007/s10584-017-2040-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2040-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2040-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    2. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    3. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    4. Jisang Yu & Gyuhyeong Goh, 2022. "Estimating temperature impacts on perennial crop losses in California: Insights from insurance data," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1409-1423, September.
    5. Paulina Concha Larrauri & Upmanu Lall, 2020. "Big Data links from Climate to Commodity Production Forecasts and Risk Management," Papers 2007.03015, arXiv.org.
    6. Gabriel Granco & Haoji He & Brandon Lentz & Jully Voong & Alan Reeve & Exal Vega, 2023. "Mid- and End-of-the-Century Estimation of Agricultural Suitability of California’s Specialty Crops," Land, MDPI, vol. 12(10), pages 1-18, October.
    7. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    8. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    9. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.
    10. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    11. Bruno, Ellen Marie & Hagerty, Nick, 2023. "Anticipatory Effects of Regulation in Open Access," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt58n467v5, Department of Agricultural & Resource Economics, UC Berkeley.
    12. Welle, Paul D. & Medellín-Azuara, Josué & Viers, Joshua H. & Mauter, Meagan S., 2017. "Economic and policy drivers of agricultural water desalination in California’s central valley," Agricultural Water Management, Elsevier, vol. 194(C), pages 192-203.
    13. Lauren E. Parker & John T. Abatzoglou, 2018. "Shifts in the thermal niche of almond under climate change," Climatic Change, Springer, vol. 147(1), pages 211-224, March.
    14. Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
    15. Bingxia Wang & Mohd Azmi Haron & Zailan Siri, 2024. "The Impact of Air Pollution Risk on the Sustainability of Crop Insurance Losses," Sustainability, MDPI, vol. 16(19), pages 1-23, October.
    16. Tamara S. Wilson & Nathan D. Van Schmidt & Ruth Langridge, 2020. "Land-Use Change and Future Water Demand in California’s Central Coast," Land, MDPI, vol. 9(9), pages 1-21, September.
    17. repec:ags:aaea22:335474 is not listed on IDEAS
    18. Abdul Muis Hasibuan & Daniel Gregg & Randy Stringer, 2021. "The role of certification, risk and time preferences in promoting adoption of climate-resilient citrus varieties in Indonesia," Climatic Change, Springer, vol. 164(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:148:y:2018:i:3:d:10.1007_s10584-017-2040-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.