IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v07y2016i02ns2010007816500019.html
   My bibliography  Save this article

Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?

Author

Listed:
  • ARISHA ASHRAF

    (Department of Environmental Sciences, University of California, Riverside, USA)

  • ARIEL DINAR

    (#x2020;School of Public Policy, University of California, Riverside, USA)

  • ÉRIKA MONTEIRO

    (#x2021;Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Brazil)

  • TODD GASTON

    (#xA7;USBR Technical Service Center, Economics and Resource Planning, Denver, CO, USA)

Abstract

Following the release of the IPCC Fifth Assessment Report, and realizing the likely impact on California water and agricultural sectors, we review key concepts in the climate change lexicon in the context of California agriculture. There are a range of modeling approaches used to study the benefits of water basin- and/or farm-level adaptations, including hydrological, crop simulation, economic programming, and econometric models. Given the central role of farmer and institutional responsiveness, how do recent agro-economic assessments suggest that specific adaptations may improve economic welfare and reduce vulnerability? What is economically efficient adaptation in the short and long-run? What are the limits to the agricultural sector’s adaptive capacity?

Suggested Citation

  • Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
  • Handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500019
    DOI: 10.1142/S2010007816500019
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007816500019
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007816500019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    2. Fisher, Anthony C. & Hanemann, W. Michael, 1998. "The Impact of Global Warming on Agriculture: Rethinking the Ricardian Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt4bx3m5dj, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Juhwan Lee & Steven Gryze & Johan Six, 2011. "Effect of climate change on field crop production in California’s Central Valley," Climatic Change, Springer, vol. 109(1), pages 335-353, December.
    4. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    5. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    6. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    7. Olivier Deschênes & Michael Greenstone, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply," American Economic Review, American Economic Association, vol. 102(7), pages 3761-3773, December.
    8. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    10. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    11. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    12. Jan Lewandrowski & David Schimmelpfennig, 1999. "Economic Implications of Climate Change for U.S. Agriculture: Assessing Recent Evidence," Land Economics, University of Wisconsin Press, vol. 75(1), pages 39-57.
    13. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    14. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    15. L. Jackson & S. Wheeler & A. Hollander & A. O’Geen & B. Orlove & J. Six & D. Sumner & F. Santos-Martin & J. Kramer & W. Horwath & R. Howitt & T. Tomich, 2011. "Case study on potential agricultural responses to climate change in a California landscape," Climatic Change, Springer, vol. 109(1), pages 407-427, December.
    16. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    17. Mendelsohn, Robert & Nordhaus, William, 1996. "The Impact of Global Warming on Agriculture: Reply," American Economic Review, American Economic Association, vol. 86(5), pages 1312-1315, December.
    18. Brian Joyce & Vishal Mehta & David Purkey & Larry Dale & Michael Hanemann, 2011. "Modifying agricultural water management to adapt to climate change in California’s central valley," Climatic Change, Springer, vol. 109(1), pages 299-316, December.
    19. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    20. Joel B. Smith & Robert Mendelsohn (ed.), 2006. "The Impact of Climate Change on Regional Systems," Books, Edward Elgar Publishing, number 4129.
    21. Josué Medellín-Azuara & Richard Howitt & Duncan MacEwan & Jay Lund, 2011. "Economic impacts of climate-related changes to California agriculture," Climatic Change, Springer, vol. 109(1), pages 387-405, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    2. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    3. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    4. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    5. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    6. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    7. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    8. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    9. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    10. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    11. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    12. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    13. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    14. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    15. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    16. Kaixing Huang & Nicholas Sim, 2021. "Adaptation May Reduce Climate Damage in Agriculture by Two Thirds," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 47-71, February.
    17. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    18. Chen, Zhangliang & Dall'Erba, Sandy, 2018. "Do crop insurance programs preclude their recipients from adapting to new climate conditions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274398, Agricultural and Applied Economics Association.
    19. Sayed Morteza Malaekeh & Layla Shiva & Ammar Safaie, 2024. "Investigating the economic impact of climate change on agriculture in Iran: Spatial spillovers matter," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 433-453, May.
    20. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.