IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i4p723-737.html
   My bibliography  Save this article

Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California

Author

Listed:
  • Hyunok Lee
  • Daniel Sumner

Abstract

This article establishes quantitative relationships between the evolution of climate and cropland using daily climate data for a century and data on allocation of land across crops for six decades in a specific agro-climatic region of California. These relationships are applied to project how climate scenarios reported by the Intergovernmental Panel on Climate Change would drive cropland patterns into 2050. Projections of warmer winters, particularly from 2035 to 2050, cause lower wheat area and more alfalfa and tomato area. Only marginal changes in area were projected for tree and vine crops, in part because although lower, chill hours remain above critical values. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:4:p:723-737
    DOI: 10.1007/s10584-015-1436-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1436-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1436-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    2. Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    6. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    7. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    8. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    9. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krah, Kwabena, 2022. "Maize price variability, land use change, and forestloss: evidence from Ghana," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322247, Agricultural and Applied Economics Association.
    2. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    3. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    4. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    5. Jisang Yu & Gyuhyeong Goh, 2022. "Estimating temperature impacts on perennial crop losses in California: Insights from insurance data," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1409-1423, September.
    6. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia & Sanchirico, James & Springborn, Michael, 2016. "The effects of climate change on groundwater extraction for agriculture and land-use change," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235724, Agricultural and Applied Economics Association.
    7. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    2. Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
    3. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    4. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    5. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    6. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    7. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    8. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    9. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    10. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    11. Liu, Ziheng & Lu, Qinan, 2023. "Ozone stress and crop harvesting failure: Evidence from US food production," Food Policy, Elsevier, vol. 121(C).
    12. Njuki, Eric, 2021. "Nonlinear weather and climate-induced effects on hired farm labor wages: Evidence from the U.S. Cornbelt," 2021 Annual Meeting, August 1-3, Austin, Texas 313959, Agricultural and Applied Economics Association.
    13. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    14. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    15. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    16. Kumar, Surender & Managi, Shunsuke, 2016. "Carbon-sensitive productivity, climate and institutions," Environment and Development Economics, Cambridge University Press, vol. 21(1), pages 109-133, February.
    17. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    18. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    19. David García-León, 2015. "Weather and Income: Lessons from the Main European Regions," Working Papers 2015.39, Fondazione Eni Enrico Mattei.
    20. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, vol. 10(10), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:4:p:723-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.