IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v145y2017i1d10.1007_s10584-017-2072-3.html
   My bibliography  Save this article

Impacts of 1.5 and 2 °C global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China

Author

Listed:
  • Lüliu Liu

    (China Meteorological Administration)

  • Hongmei Xu

    (China Meteorological Administration)

  • Yong Wang

    (Chongqing Climate Center)

  • Tong Jiang

    (China Meteorological Administration
    Nanjing University of Information Science & Technology)

Abstract

In the discussion of climate impacts, 1.5 and 2 °C have become iconic values. This study examines the impacts of 1.5 and 2 °C global warming on water availability, runoff seasonality, and extreme monthly and daily runoff in two catchments, using the semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning-D, based on a combination of five global climate models (GCMs) and four representative concentration pathways (RCPs). Subsequently, quantitative assessments were made for projection uncertainties from GCMs and RCPs. The two catchments are the Yiluo River catchment (YLC) in northern China and the Beijiang River catchment (BJC) in southern China. The results indicate wetter flood seasons for YLC and warmer mean annual temperatures, drier springs, and more severe floods over long return periods (25 and 50 years) for both catchments. The change magnitude of most indicators is expected to be larger in YLC than in BJC. Mean annual temperatures in both catchments are expected to have smaller changes under the 1.5 °C scenario than under the 2.0 °C scenario. However, the change magnitude of the other hydrological variables is projected to be approximately equivalent for both catchments under both scenarios. Uncertainties of projected impacts from GCMs are generally larger than those from RCP scenarios, for both catchments and warming scenarios, with the exception of mean annual temperature of BJC. These findings indicate that effective measures are required to address increasing annual temperatures, more severe flood events (25- and 50-year return periods), and drier spring seasons in both catchments and wetter flood seasons in YLC.

Suggested Citation

  • Lüliu Liu & Hongmei Xu & Yong Wang & Tong Jiang, 2017. "Impacts of 1.5 and 2 °C global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China," Climatic Change, Springer, vol. 145(1), pages 145-158, November.
  • Handle: RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2072-3
    DOI: 10.1007/s10584-017-2072-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2072-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2072-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    2. Buda Su & Jinlong Huang & Xiaofan Zeng & Chao Gao & Tong Jiang, 2017. "Impacts of climate change on streamflow in the upper Yangtze River basin," Climatic Change, Springer, vol. 141(3), pages 533-546, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Worako, A. W. & Haile, Alemseged Tamiru & Taye, Meron Teferi, 2022. "Implication of bias correction on climate change impact projection of surface water resources in the Gidabo Sub-basin, southern Ethiopia," Papers published in Journals (Open Access), International Water Management Institute, pages 13(5):2070-.
    2. Jun Hou & Tianlin Qin & Shanshan Liu & Jianwei Wang & Biqiong Dong & Sheng Yan & Hanjiang Nie, 2021. "Analysis and Prediction of Ecosystem Service Values Based on Land Use/Cover Change in the Yiluo River Basin," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    3. Yinmao Zhao & Zhansheng Li & Siyu Cai & Hao Wang, 2020. "Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 °C and 2 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 669-688, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Yuan & Jijun Xu & Yongqiang Wang, 2018. "Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    2. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    3. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    4. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    6. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    7. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    8. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    9. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    10. Eun-Sung Chung & Kwangjae Won & Yeonjoo Kim & Hosun Lee, 2014. "Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    11. Florence Habets & Julien Boé & Michel Déqué & Agnès Ducharne & Simon Gascoin & Ali Hachour & Eric Martin & Christian Pagé & Eric Sauquet & Laurent Terray & Dominique Thiéry & Ludovic Oudin & Pascal Vi, 2013. "Impact of climate change on the hydrogeology of two basins in northern France," Climatic Change, Springer, vol. 121(4), pages 771-785, December.
    12. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    13. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    14. Michelle Vliet & Stephen Blenkinsop & Aidan Burton & Colin Harpham & Hans Broers & Hayley Fowler, 2012. "A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe," Climatic Change, Springer, vol. 111(2), pages 249-277, March.
    15. Zigeng Niu & Lan Feng & Xinxin Chen & Xiuping Yi, 2021. "Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    16. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    17. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    18. Sogol Moradian & Ali Torabi Haghighi & Maryam Asadi & Seyed Ahmad Mirbagheri, 2023. "Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2447-2463, May.
    19. Xiaowen Ding & Lin Liu, 2019. "Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    20. Seyed Morteza Seyedian & Ozgur Kisi & Abbas Parsaie & Mojtaba Kashani, 2024. "Improving the Reliability of Compound Channel Discharge Prediction Using Machine Learning Techniques and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4685-4709, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2072-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.