IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp262-271.html
   My bibliography  Save this article

Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability

Author

Listed:
  • Chassin, David P.
  • Behboodi, Sahand
  • Djilali, Ned

Abstract

This paper proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time solution suitable for periodic feedback control systems is presented. The method is applied to North America Western Interconnection for the planning year 2024. It is shown that an optimal dispatch strategy that simultaneously considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.

Suggested Citation

  • Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:262-271
    DOI: 10.1016/j.apenergy.2018.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherrelle Eid & Paul Codani & Yurong Chen & Yannick Perez & Rudi Hakvoort, 2015. "Aggregation of demand side flexibility in a smart grid: A review for European market design," Post-Print hal-01230914, HAL.
    2. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    3. Chandel, Munish K. & Pratson, Lincoln F. & Jackson, Robert B., 2011. "The potential impacts of climate-change policy on freshwater use in thermoelectric power generation," Energy Policy, Elsevier, vol. 39(10), pages 6234-6242, October.
    4. Chassin, David P. & Behboodi, Sahand & Shi, Yang & Djilali, Ned, 2017. "H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables," Applied Energy, Elsevier, vol. 205(C), pages 304-315.
    5. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
    6. Tanaka, Makoto, 2006. "Real-time pricing with ramping costs: A new approach to managing a steep change in electricity demand," Energy Policy, Elsevier, vol. 34(18), pages 3634-3643, December.
    7. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongpei & Yan, Qing & Luo, Yifei & Zhang, Qian, 2023. "Carbon abatement of electricity sector with renewable energy deployment: Evidence from China," Renewable Energy, Elsevier, vol. 210(C), pages 1-11.
    2. Wyman-Pain, Heather & Bian, Yuankai & Thomas, Cain & Li, Furong, 2018. "The economics of different generation technologies for frequency response provision," Applied Energy, Elsevier, vol. 222(C), pages 554-563.
    3. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    4. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2019. "Parametric optimization of long-term multi-area heat and power production with power storage," Applied Energy, Elsevier, vol. 235(C), pages 802-812.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh, 2019. "An integrated transmission and distribution test system for evaluation of transactive energy designs," Applied Energy, Elsevier, vol. 240(C), pages 666-679.
    2. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    3. Yu, Min Gyung & Pavlak, Gregory S., 2021. "Assessing the performance of uncertainty-aware transactive controls for building thermal energy storage systems," Applied Energy, Elsevier, vol. 282(PB).
    4. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    5. Janko, Samantha A. & Johnson, Nathan G., 2018. "Scalable multi-agent microgrid negotiations for a transactive energy market," Applied Energy, Elsevier, vol. 229(C), pages 715-727.
    6. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    7. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    8. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    9. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    10. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    11. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    12. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    13. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    14. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    16. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. English, J. & Niet, T. & Lyseng, B. & Palmer-Wilson, K. & Keller, V. & Moazzen, I. & Pitt, L. & Wild, P. & Rowe, A., 2017. "Impact of electrical intertie capacity on carbon policy effectiveness," Energy Policy, Elsevier, vol. 101(C), pages 571-581.
    18. Chassin, David P. & Behboodi, Sahand & Shi, Yang & Djilali, Ned, 2017. "H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables," Applied Energy, Elsevier, vol. 205(C), pages 304-315.
    19. Xin, Li & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2015. "Challenges faced when energy meets water: CO2 and water implications of power generation in inner Mongolia of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 419-430.
    20. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:262-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.