IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v26y2021i3d10.1007_s11027-021-09943-8.html
   My bibliography  Save this article

Drought-related vulnerability and its policy implications in Hungary

Author

Listed:
  • Attila Buzási

    (Budapest University of Technology and Economics)

  • Tamás Pálvölgyi

    (Budapest University of Technology and Economics)

  • Diána Esses

    (Budapest University of Technology and Economics)

Abstract

Drought phenomena have been frequent in Hungarian history. One of the most important sectors in Hungary is agriculture, so the agricultural drought is a particularly important area to be examined. The purpose of the study is to determine how vulnerable each county (NUTS-3 regions) is to the expected effects of drought. The study provides an assessment framework of drought-related vulnerabilities and the preparedness of drought policies at the NUTS-3 level in Hungary. The drought-related vulnerability of NUTS-3 regions was determined by selected exposure, sensitivity, and adaptive capacity indicators. The calculation of drought vulnerability is based on the IPCC 2007 methodology, while the input data were derived from the National Adaptation Geo-information System online data platform and Hungarian agro-statistical data sources. An assessment framework of drought-related policy performance of NUTS-3-level climate change strategies was developed. The evaluation methodology is based on a specific scorecard of evaluation criteria related to the performance of the county’s drought-related objectives and measures. According to the relationship between the county’s drought-related vulnerability and policy performance, the counties were classified into four types. The main results show that several counties fail the target by overestimating the role of drought prevention, with little vulnerability index. In contrast, many counties are not adequately prepared for the impacts of drought, despite their high vulnerability index.

Suggested Citation

  • Attila Buzási & Tamás Pálvölgyi & Diána Esses, 2021. "Drought-related vulnerability and its policy implications in Hungary," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(3), pages 1-20, March.
  • Handle: RePEc:spr:masfgc:v:26:y:2021:i:3:d:10.1007_s11027-021-09943-8
    DOI: 10.1007/s11027-021-09943-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-021-09943-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-021-09943-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julia Urquijo & David Pereira & Susana Dias & Lucia De Stefano, 2017. "A methodology to assess drought management as applied to six European case studies," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(2), pages 246-269, March.
    2. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    3. James D. Ford & Tristan Pearce & Graham McDowell & Lea Berrang-Ford & Jesse S. Sayles & Ella Belfer, 2018. "Vulnerability and its discontents: the past, present, and future of climate change vulnerability research," Climatic Change, Springer, vol. 151(2), pages 189-203, November.
    4. Giovanni Forzieri & Luc Feyen & Simone Russo & Michalis Vousdoukas & Lorenzo Alfieri & Stephen Outten & Mirco Migliavacca & Alessandra Bianchi & Rodrigo Rojas & Alba Cid, 2016. "Multi-hazard assessment in Europe under climate change," Climatic Change, Springer, vol. 137(1), pages 105-119, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potopová, V. & Trifan, T. & Trnka, M. & De Michele, C. & Semerádová, D. & Fischer, M. & Meitner, J. & Musiolková, M. & Muntean, N. & Clothier, B., 2023. "Copulas modelling of maize yield losses – drought compound events using the multiple remote sensing indices over the Danube River Basin," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktória Blanka & Zsuzsanna Ladányi & Péter Szilassi & György Sipos & Attila Rácz & József Szatmári, 2017. "Public Perception on Hydro-Climatic Extremes and Water Management Related to Environmental Exposure, SE Hungary," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1619-1634, March.
    2. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    3. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    4. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    5. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    6. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    7. Alexander S. Little & Matthew D. K. Priestley & Jennifer L. Catto, 2023. "Future increased risk from extratropical windstorms in northern Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Abdoulaye Sy & Catherine Araujo-Bonjean & Marie-Eliette Dury & Nourddine Azzaoui & Arnaud Guillin, 2021. "An Extreme Value Mixture model to assess drought hazard in West Africa," Working Papers hal-03297023, HAL.
    9. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    10. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    11. George Halkos & Antonis Skouloudis & Chrisovaladis Malesios & Konstantinos Evangelinos, 2018. "Bouncing Back from Extreme Weather Events: Some Preliminary Findings on Resilience Barriers Facing Small and Medium‐Sized Enterprises," Business Strategy and the Environment, Wiley Blackwell, vol. 27(4), pages 547-559, May.
    12. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    13. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.
    14. Huicong Jia & Fang Chen & Jing Zhang & Enyu Du, 2020. "Vulnerability Analysis to Drought Based on Remote Sensing Indexes," IJERPH, MDPI, vol. 17(20), pages 1-20, October.
    15. Meilutytė-Lukauskienė D. & Akstinas V. & Vaitulionytė M. & Tomkevičienė A., 2022. "Behaviour of the 2010 flood in Lithuania: management and socio-economic risks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-29, March.
    16. Xinyu Fu & Mark Svoboda & Zhenghong Tang & Zhijun Dai & Jianjun Wu, 2013. "An overview of US state drought plans: crisis or risk management?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1607-1627, December.
    17. Piyush Dahal & Nicky Shree Shrestha & Madan Lall Shrestha & Nir Y. Krakauer & Jeeban Panthi & Soni M. Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    18. Qun Huang & Zhandong Sun & Christian Opp & Tom Lotz & Jiahu Jiang & Xijun Lai, 2014. "Hydrological Drought at Dongting Lake: Its Detection, Characterization, and Challenges Associated With Three Gorges Dam in Central Yangtze, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5377-5388, December.
    19. Anne Gobin & Le Thi Thu Hien & Le Trinh Hai & Pham Ha Linh & Nguyen Ngoc Thang & Pham Quang Vinh, 2020. "Adaptation to Land Degradation in Southeast Vietnam," Land, MDPI, vol. 9(9), pages 1-25, August.
    20. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:26:y:2021:i:3:d:10.1007_s11027-021-09943-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.