IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1066-d81137.html
   My bibliography  Save this article

Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC)

Author

Listed:
  • Ran Wang

    (School of Geography, Beijing Normal University, Beijing 100875, China
    Laboratory of Regional Geography, Beijing Normal University, Beijing 100875, China)

  • Laiyin Zhu

    (Department of Geography, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5424, USA)

  • Han Yu

    (School of Geography, Beijing Normal University, Beijing 100875, China
    Laboratory of Regional Geography, Beijing Normal University, Beijing 100875, China
    School of Agriculture & Forestry Economics and Management, Lanzhou University of Finance and Economics, Lanzhou 730101, China)

  • Shujuan Cui

    (School of Geography, Beijing Normal University, Beijing 100875, China
    Laboratory of Regional Geography, Beijing Normal University, Beijing 100875, China)

  • Jing’ai Wang

    (School of Geography, Beijing Normal University, Beijing 100875, China
    Laboratory of Regional Geography, Beijing Normal University, Beijing 100875, China)

Abstract

The catastrophic events caused by meteorological disasters are becoming more severe in the context of global warming. The disaster chains triggered by Tropical Cyclones induce the serious losses of population and economy. It is necessary to make the regional type recognition of Tropical Cyclone Disaster Chain (TDC) effective in order to make targeted preventions. This study mainly explores the method of automatic recognition and the mapping of TDC and designs a software system. We constructed an automatic recognition system in terms of the characteristics of a hazard-formative environment based on the theory of a natural disaster system. The ArcEngine components enable an intelligent software system to present results by the automatic mapping approach. The study data comes from global metadata such as Digital Elevation Model (DEM), terrain slope, population density and Gross Domestic Product (GDP). The result shows that: (1) according to the characteristic of geomorphology type, we establish a type of recognition system for global TDC; (2) based on the recognition principle, we design a software system with the functions of automatic recognition and mapping; and (3) we validate the type of distribution in terms of real cases of TDC. The result shows that the automatic recognition function has good reliability. The study can provide the basis for targeted regional disaster prevention strategy, as well as regional sustainable development.

Suggested Citation

  • Ran Wang & Laiyin Zhu & Han Yu & Shujuan Cui & Jing’ai Wang, 2016. "Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC)," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1066-:d:81137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Liza Ireni Saban, 2015. "Entrepreneurial Brokers in Disaster Response Network in Typhoon Haiyan in the Philippines," Public Management Review, Taylor & Francis Journals, vol. 17(10), pages 1496-1517, November.
    3. G. Berz & W. Kron & T. Loster & E. Rauch & J. Schimetschek & J. Schmieder & A. Siebert & A. Smolka & A. Wirtz, 2001. "World Map of Natural Hazards – A Global View of the Distribution and Intensity of Significant Exposures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 443-465, March.
    4. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    5. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    6. Ginni Melton & Melanie Gall & Jerry Mitchell & Susan Cutter, 2010. "Hurricane Katrina storm surge delineation: implications for future storm surge forecasts and warnings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 519-536, August.
    7. Lifen Xu & Xiangwei Meng & Xuegong Xu, 2014. "Natural hazard chain research in China: A review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1631-1659, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    2. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    3. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    4. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    5. Xinliang Xu & Daowei Sun & Tengjiao Guo, 2015. "A systemic analysis of typhoon risk across China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 461-477, May.
    6. Lin Wang & Guofang Hu & Yaojie Yue & Xinyue Ye & Min Li & Jintao Zhao & Jinhong Wan, 2016. "GIS-Based Risk Assessment of Hail Disasters Affecting Cotton and Its Spatiotemporal Evolution in China," Sustainability, MDPI, vol. 8(3), pages 1-20, February.
    7. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    8. Changhong Zhou & Mu Chen & Jiangtao Chen & Yu Chen & Wenwu Chen, 2024. "A Multi-Hazard Risk Assessment Model for a Road Network Based on Neural Networks and Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    9. Parag Mahajan & Dean Yang, 2020. "Taken by Storm: Hurricanes, Migrant Networks, and US Immigration," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 250-277, April.
    10. Pugatch, Todd, 2019. "Tropical storms and mortality under climate change," World Development, Elsevier, vol. 117(C), pages 172-182.
    11. Gustavo Barrantes, 2018. "Multi-hazard model for developing countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1081-1095, June.
    12. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    13. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    14. María Ibarrarán & Matthias Ruth & Sanjana Ahmad & Marisa London, 2009. "Climate change and natural disasters: macroeconomic performance and distributional impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 549-569, June.
    15. Yang Dean, 2008. "Coping with Disaster: The Impact of Hurricanes on International Financial Flows, 1970-2002," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 8(1), pages 1-45, June.
    16. Mohammad Ridwan Lessy & Jonatan Lassa & Kerstin K. Zander, 2024. "Understanding Multi-Hazard Interactions and Impacts on Small-Island Communities: Insights from the Active Volcano Island of Ternate, Indonesia," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    17. Giovanni Forzieri & Luc Feyen & Simone Russo & Michalis Vousdoukas & Lorenzo Alfieri & Stephen Outten & Mirco Migliavacca & Alessandra Bianchi & Rodrigo Rojas & Alba Cid, 2016. "Multi-hazard assessment in Europe under climate change," Climatic Change, Springer, vol. 137(1), pages 105-119, July.
    18. Alessandro D’Amico & Martina Russo & Marco Angelosanti & Gabriele Bernardini & Donatella Vicari & Enrico Quagliarini & Edoardo Currà, 2021. "Built Environment Typologies Prone to Risk: A Cluster Analysis of Open Spaces in Italian Cities," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    19. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    20. Eric Strobl, 2009. "The impact of hurricane strikes on local cropland productivity: Evidence from the Carribean," Working Papers hal-00393883, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1066-:d:81137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.