IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v131y2015i2p213-227.html
   My bibliography  Save this article

Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions

Author

Listed:
  • Osvaldo Sala
  • Laureano Gherardi
  • Debra Peters

Abstract

Climate change will result in increased precipitation variability with more extreme events reflected in more frequent droughts as well as more frequent extremely wet conditions. The increase in precipitation variability will occur at different temporal scales from intra to inter-annual and even longer scales. At the intra-annual scale, extreme precipitation events will be interspersed with prolonged periods in between events. At the inter-annual scale, dry years or multi-year droughts will be combined with wet years or multi-year wet conditions. Consequences of this aspect of climate change for the functioning ecosystems and their ability to provide ecosystem services have been underexplored. We used a process-based ecosystem model to simulate water losses and soil-water availability at 35 grassland locations in the central US under 4 levels of precipitation variability (control, +25, +50 + 75 %) and six temporal scales ranging from intra- to multi-annual variability. We show that the scale of temporal variability had a larger effect on soil-water availability than the magnitude of variability, and that inter- and multi-annual variability had much larger effects than intra-annual variability. Further, the effect of precipitation variability was modulated by mean annual precipitation. Arid-semiarid locations receiving less than about 380 mm yr −1 mean annual precipitation showed increases in water availability as a result of enhanced precipitation variability while more mesic locations (>380 mm yr −1 ) showed a decrease in soil water availability. The beneficial effects of enhanced variability in arid-semiarid regions resulted from a deepening of the soil-water availability profile and a reduction in bare soil evaporation. The deepening of the soil-water availability profile resulting from increase precipitation variability may promote future shifts in species composition and dominance to deeper-rooted woody plants for ecosystems that are susceptible to state changes. The break point, which has a mean of 380-mm with a range between 440 and 350 mm, is remarkably similar to the 370-mm threshold of the inverse texture hypothesis, below which coarse-texture soils had higher productivity than fine-textured soils. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Osvaldo Sala & Laureano Gherardi & Debra Peters, 2015. "Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions," Climatic Change, Springer, vol. 131(2), pages 213-227, July.
  • Handle: RePEc:spr:climat:v:131:y:2015:i:2:p:213-227
    DOI: 10.1007/s10584-015-1389-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1389-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1389-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Liu & Bin Wang & Mark A. Cane & So-Young Yim & June-Yi Lee, 2013. "Divergent global precipitation changes induced by natural versus anthropogenic forcing," Nature, Nature, vol. 493(7434), pages 656-659, January.
    2. Jens H. Christensen & Ole B. Christensen, 2003. "Severe summertime flooding in Europe," Nature, Nature, vol. 421(6925), pages 805-806, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    2. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    3. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Juan-Carlos Ciscar & Antonio Soria & Clare M. Goodess & Ole B. Christensen & Ana Iglesias & Luis Garrote & Marta Moneo & Sonia Quiroga & Luc Feyen & Rutger Dankers & Robert Nicholls & Julie Richards &, 2009. "Climate change impacts in Europe. Final report of the PESETA research project," JRC Research Reports JRC55391, Joint Research Centre.
    5. Suhyung Jang & M. Levent Kavvas & Kei Ishida & Toan Trinh & Noriaki Ohara & Shuichi Kure & Z. Q. Chen & Michael L. Anderson & G. Matanga & Kara J. Carr, 2017. "A Performance Evaluation of Dynamical Downscaling of Precipitation over Northern California," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    6. Xiaoqing Shi & Tianling Qin & Hanjiang Nie & Baisha Weng & Shan He, 2019. "Changes in Major Global River Discharges Directed into the Ocean," IJERPH, MDPI, vol. 16(8), pages 1-19, April.
    7. S. Athanasatos & S. Michaelides & M. Papadakis, 2014. "Identification of weather trends for use as a component of risk management for port operations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 41-61, May.
    8. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    9. Sébastien Nusslé & Kathleen R Matthews & Stephanie M Carlson, 2015. "Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
    10. Bogusława Baran-Zgłobicka & Dominika Godziszewska & Wojciech Zgłobicki, 2021. "The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland)," Resources, MDPI, vol. 10(2), pages 1-20, February.
    11. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    12. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    13. Lu Liu & Weiyi Sun & Jian Liu, 2023. "Spatio-Temporal Analysis of Simulated Summer Extreme Precipitation Events under RCP4.5 Scenario in the Middle and Lower Reaches of the Yangtze River Basin," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    14. Jose I. Barredo & Carlo Lavalle & Valentina Sagris & Guy Engelen, 2005. "Representing future urban and regional scenarios for flood hazard mitigation," ERSA conference papers ersa05p147, European Regional Science Association.
    15. Chun-Chao Kuo & Kai Ernn Gan & Yang Yang & Thian Yew Gan, 2021. "Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy," Climatic Change, Springer, vol. 168(3), pages 1-23, October.
    16. Mooij, W.M. & De Senerpont Domis, L.N. & Janse, J.H., 2009. "Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model," Ecological Modelling, Elsevier, vol. 220(21), pages 3011-3020.
    17. Zbigniew Kundzewicz & Yukiko Hirabayashi & Shinjiro Kanae, 2010. "River Floods in the Changing Climate—Observations and Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2633-2646, September.
    18. Johannes Schuler & Roos Adelhart Toorop & Magali Willaume & Anthony Vermue & Nicole Schläfke & Sandra Uthes & Peter Zander & Walter Rossing, 2020. "Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    19. Bracho-Mujica, Gennady & Hayman, Peter T. & Ostendorf, Bertram, 2019. "Modelling long-term risk profiles of wheat grain yield with limited climate data," Agricultural Systems, Elsevier, vol. 173(C), pages 393-402.
    20. Beniston, Martin, 2007. "Linking extreme climate events and economic impacts: Examples from the Swiss Alps," Energy Policy, Elsevier, vol. 35(11), pages 5384-5392, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:131:y:2015:i:2:p:213-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.