IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa05p147.html
   My bibliography  Save this paper

Representing future urban and regional scenarios for flood hazard mitigation

Author

Listed:
  • Jose I. Barredo
  • Carlo Lavalle
  • Valentina Sagris
  • Guy Engelen

Abstract

In this paper we analyse urban and regional growth trends by using dynamic spatial models. The objective of this approach is twofold: on the one hand to monitor sustainable development trends and on the other hand to assess flood risk in urban areas. We propose the use of future urban scenarios in order to forecast the effects of urban and regional planning policies. In the last 20 years the extent of built-up areas in Europe has increased by 20%, exceeding clearly the 6% rate of population growth over the same period. This trend contributes to unsustainable development patterns, and moreover, the exposure to natural hazards is increasing in large regions of Europe. The paper is organised in two parts. In the first part we analyse a study case in Friuli-Venezia Giulia (FVG) Region in northern Italy. We analyse several spatial indicators in the form of maps describing population growth and patterns, and the historical growth of built-up areas. Then we show the results of a dynamic spatial model for simulating land use scenarios. The model is based on a spatial dynamics bottom-up approach, and can be defined as a cellular automata (CA)-based model. Future urban scenarios are produced by taking into account several factors –e.g. land use development, population growth or spatial planning policies–. Urban simulations offer a useful approach to understanding the consequences of current spatial planning policies. Inappropriate regional and urban planning can exacerbate the negative effects of extreme hydrological processes. Good land management and planning practices, including appropriate land use and development control in flood-prone areas, represent suitable non-structural solutions to minimise flood damages. The overall effects of these measures in terms of both sustainable development and flood defence can be quantified with the proposed modelling approach. In the second part of the paper we show some preliminary results of a pilot study case. Two future simulations produced by the model were used for a flood risk assessment in Pordenone (one of the four provinces of FVG). In the last 100 years Pordenone has suffered several floods. The two major events were the heavy floods of 1966 (100-year flood event; >500 mm of rain in 36 hours) and 2002 (up to 580 mm of rain in 36 hours). The disastrous consequences of those heavy floods have shown how vulnerable this area is. The flood risk analysis is based on a hydrological hazard map for the Livenza River catchment area, provided by the regional Water Authority. That map covers most of flood hazard areas of Pordenone province. Early results of this study show that the main driving force of natural disasters damage is not only increasing flood hazard, but increasing vulnerability, mainly due to urbanisation in flood prone areas.

Suggested Citation

  • Jose I. Barredo & Carlo Lavalle & Valentina Sagris & Guy Engelen, 2005. "Representing future urban and regional scenarios for flood hazard mitigation," ERSA conference papers ersa05p147, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa05p147
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa05/papers/147.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    2. Jens H. Christensen & Ole B. Christensen, 2003. "Severe summertime flooding in Europe," Nature, Nature, vol. 421(6925), pages 805-806, February.
    3. H Couclelis, 1988. "Of Mice and Men: What Rodent Populations Can Teach Us about Complex Spatial Dynamics," Environment and Planning A, , vol. 20(1), pages 99-109, January.
    4. M Batty & P A Longley, 1986. "The Fractal Simulation of Urban Structure," Environment and Planning A, , vol. 18(9), pages 1143-1179, September.
    5. Leon Glass, 2001. "Synchronization and rhythmic processes in physiology," Nature, Nature, vol. 410(6825), pages 277-284, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gargi Chaudhuri & Keith C Clarke, 2015. "On the Spatiotemporal Dynamics of the Coupling between Land Use and Road Networks: Does Political History Matter?," Environment and Planning B, , vol. 42(1), pages 133-156, February.
    2. Laura-Oana Petrov & Carlo Lavalle & Valentina Sagris & Jose Barredo & Marjo Kasanko, 2000. "Simulating Urban and Regional Evolutions: Scenarios of Development in Three Study Cases: Algarve Province (Portugal), Dresden-Prague Transport Corridor (Germany-Czech Republic) and Friuli-Venezia Giul," Regional and Urban Modeling 283600073, EcoMod.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    2. Eduardo Gomes & Arnaud Banos & Patrícia Abrantes & Jorge Rocha, 2018. "Assessing the Effect of Spatial Proximity on Urban Growth," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    3. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    4. Kwok Hung Lau & Booi Hon Kam, 2005. "A Cellular Automata Model for Urban Land-Use Simulation," Environment and Planning B, , vol. 32(2), pages 247-263, April.
    5. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    6. José I Barredo & Luca Demicheli & Carlo Lavalle & Marjo Kasanko & Niall McCormick, 2004. "Modelling Future Urban Scenarios in Developing Countries: An Application Case Study in Lagos, Nigeria," Environment and Planning B, , vol. 31(1), pages 65-84, February.
    7. Ricardo Bioni Liberalquino & Maurizio Monge & Stefano Galatolo & Luigi Marangio, 2018. "Chaotic Itinerancy in Random Dynamical System Related to Associative Memory Models," Mathematics, MDPI, vol. 6(3), pages 1-10, March.
    8. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    9. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    10. Charles Perrings & David Stern, 2000. "Modelling Loss of Resilience in Agroecosystems: Rangelands in Botswana," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 185-210, June.
    11. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    12. Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
    13. Alexey V. Rusakov & Dmitry A. Tikhonov & Nailya I. Nurieva & Alexander B. Medvinsky, 2021. "Emergence of Self-Organized Dynamical Domains in a Ring of Coupled Population Oscillators," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    14. C J Webster & F Wu, 1999. "Regulation, Land-Use Mix, and Urban Performance. Part 1: Theory," Environment and Planning A, , vol. 31(8), pages 1433-1442, August.
    15. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    16. M Batty & Y Xie, 1994. "From Cells to Cities," Environment and Planning B, , vol. 21(7), pages 31-48, December.
    17. repec:rre:publsh:v:33:y:2003:i:3:p:264-83 is not listed on IDEAS
    18. Stephen M McCauley & John Rogan & James T Murphy & Billie L Turner & Samuel Ratick, 2015. "Modeling the Sociospatial Constraints on Land-Use Change: The Case of Periurban Sprawl in the Greater Boston Region," Environment and Planning B, , vol. 42(2), pages 221-241, April.
    19. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    20. Ricardo Ruiz & Bernardo Alves Furtado, 2007. "An Agent Based Model for Urban Structure: the case of Belo Horizonte - Brazil," EcoMod2007 23900079, EcoMod.
    21. Nerea Martín-Raya & Jaime Díaz-Pacheco & Abel López-Díez & Pedro Dorta Antequera & Amílcar Cabrera, 2023. "A lava flow simulation experience oriented to disaster risk reduction, early warning systems and response during the 2021 volcanic eruption in Cumbre Vieja, La Palma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3331-3351, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa05p147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.